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THE GENERATING EQUATIONS OF RA YLEIGH-SCHRODINGER PERTURBATION THEORY 
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A set of non-linear equations is given which solves the stationary Schri:idinger equation in terms of a known subproblem. 
An iterative solution of the equations yields the degenera te version of Rayleigh-Schri:idinger perturbation theory, but other 
approximation schemes, as well as a purely numerical solution, are possible. As an illustration the Stark effect of the planar 
rigid rotator is discussed. 

The quantum-mechanical characterization of a 
closed system described by a hamiltonian H, whether 
it be a single atoro or an aggregate of many, requires 
solving the stationary Schrodinger equation in Hilbert 
space. Only in a few cases do closed solutions exist, 
and one is forced in general to make simplifying as­
sumptions. The most fruitful one has been to restrict 
oneself to a manifold of Hilbert space spanned by 
sorne reduced set {<P¡} of basis functions, a good choice 
being one such that a reasonable approximation to the 
actual wavefunction is given by a linear combination 
of a few <P¡. Such is the case of the atomic or molecular 
shell model where one takes as basis functions sorne 
suitable atornic orbitals or adequately symmetrized lin­
ear combination of them. The basis set is easily charac­
terized when there is sorne soluble subproblem h which 
sufficiently resembles H, in which case one takes {..P¡} 
to be sorne selected set of eigenfunctions of h. As in 
most cases the <P¡ belong to the discrete spectrwn, 
when the remainder H- h is small one may use 
Rayleigh-Schrodinger perturbation theory in order to 
fmd an approximate solution [1]. In what follows it 
will be shown that a related approach may be used to 
solve the Schrodinger equation when it is not required 
that H- h be small, but instead that the eigenfunc-
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tions satisfy a certain overlap condition. Perturbation 
theory is obtained when one solves by iteration the 
non-linear equations which determine the solution, 
this being the reason why we have called them the gen­
erating equations of Rayleigh-Schrodinger perturba­
tion theory. 

The generating equations may be obtained by spe­
cializing results from the theory of effective hamil­
tonians [2-7]. As this theory is usually formulated in 
the language of abstract vector spaces, projection 
operators, biorthogonal basis vectors, and the like -
a language which is not necessary for solving the sim­
pler problem discussed below - we will instead make 
an independent discussion based solely on standard 
linear algebra. 

Let us consider the SchrOdinger equation 

(1) 

in the finite dimensional space spanned by sorne set 
{<P¡a} of eigenfunctions of h, 

h<P¡a=e¡'Pja• a=I,2, ... ,d¡, (2) 
where the second subindex distinguishes the different 
eigenfunctions belonging to the d¡-degenerate eigenval­
ue e¡. The first subíndices have been chosen in such a 
way that 

(3) 

{4) 
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and no restrictions are irnposed on the degeneracies 
of E¡ a. The remainder Vis defined by 

V=H- h, (5) 

and all operators are taken to be hermitian as corre­
sponds to a closed system. Therefore a11 wavefunctions 
may be orthonormalized 

<.P¡a 1 'Pkb) == 0¡k0 ab = < if?¡a 1 ipkb} · (6) 

In the chosen space one may always write 

(7) 

where from (6) it follows that the matrix U of ele­
ments Ukb,ja is unitary. Using eqs. ( 4) and (5), eq. (1) 
may be written 

(h - e¡) if>¡0 = (!l.¡ a - V) if>¡a. (8) 

Replacing if>ja from eq. (7), using eq. (2), taking scalar 
product with 'PJc, and making sorne changes of índices, 
eq. (8) becomes 

(e k- e¡) ukb,ja = ukb,jall¡a-R vkb,lc Uzc,ja' (9) 

where Vkb zc is the matrix element <'PkbiVI'Pzc>· From 
eq. (3), thé first member of eq. (9) vanishes only when 
j ==k, in which case one obtains 

U¡b,ja fl¡a = 'R V¡b,zcUlc,ja · (10) 

It is now convertient to defme the d¡ X dk rectangular 
matrix A¡ k, and the d¡ X d¡ square matrix A¡ such that 
its ab matrix elements are given by 

(A¡k)ab = A¡a,kb ' (A¡)ab = Il¡aóab · (11) 

Eqs. (9) and (10) may then be more concisely written 
in terms of matrix products as 

(ek- e¡)Uk¡ = Uk¡A¡- y VkzU¡¡ , 

U¡¡ A¡= �V¡¡Uz¡. 

(12) 

(13) 

When keeping j fiXed and making k run over all pos­
sible values, one obtains a set of coupled non-linear 
equations for the matrices u11, u21, ... ,U¡¡ • ... , which 
when solved gives all the coefficients in eq. (7) as well 
a� the energy shifts tl,·n. Indeed, when U u is non-
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singular it follows that 

A¡= U¡j1 �V¡¡ U¡¡, (14) 

which may be used in eq. (12) to decouple the two 
sets of equations. U pon multiplication of the resulting 
expression by the right with Uj"¡l one gets 

Rk¡=(ek- e1)-1 �(Rk¡V¡¡Rz¡- VkzRz¡), 

i*k, 
where we have defined 

Rk¡::: Uk¡u¡¡l . 

(15) 

(16) 

The non-linear equations (15) completely determine 
Rk¡ and are the generating equations mentioned at the 
beginning. Being non-linear, these equations do have 
in general more than one solution in which case the 
"continuity" condition eq. ( 4), or 

lirn Rk·==1·Ók· 
v ..... o 1 1 1 ' (17) 

where 1¡ is the unit d¡ X d¡ square matrix, unambigu­
ously identifies the proper solution. Eq. (15) was first 
given in operator form by Bloch [2] though in a some­
what different context. In the present approach it was 
first discussed by one of the authors [3] in the par­
ticular case where 

U¡¡= 1¡. (18) 

This condition is in general not fulfJlled, and it is 
therefore necessary to discuss how to determine U¡¡· 
From eq. (14) it irnmediately follows 

A¡= U¡j1W¡¡U¡¡, (19) 

where we have defined 

W¡¡ :::y V¡k Rk¡ . (20) 

As long as all R k/ with fixed j are known, W¡¡ is also 
known, and u11, b�ing the matrix which diagonalizes 
w11, is obtained together with the 11¡0 from the eigen­
vectors and eigenvalues ofW¡¡· It should be pointed 
out that as W¡¡ is in general non-hermitian, its eigen­
vectors are not orthogonal, and therefore U¡¡ is not 
unitary. As eq. (19) remains invariant when U¡¡ is 
multiplied by an arbitrary complex number, this in· 
determination must be removed. This may be done by 
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recalling the orthonormality condition eq. (6) which 
in terms of U¡¡ and Rk¡ reads 

(4>¡a14>¡b>= E(u¡}Rk¡Rk¡U¡¡)ab =óab, k (21) 
that is 

U¡¡ Uh :.[ � Rk¡ Rk;]-1 
(22) 

which together with eq. (19) completely determines 
U¡¡ apart from irrelevant phase factors. 

An essential hypothesis was the non-singular 
character of u11, which corresponds to saying that the 
functions 

4>ja = 'f 'Pjb �b,ja , a= 1, 2, ... , d¡ , (23) 

are linearly independent. As 4>ja is the projection of 
4>¡a over the subspace spanned by the eigenfunctions 
of h with eigenvalue e1, the assumption imposes a re­
striction on how different H and h may be. It is 

known that in sorne cases, notably in superconductiv­
ity, the condition is not fu1filled, but this is the ex· 
ception rather than the rule. No prescription is known 
at present concerning the ways of partitioning H, eq. 
(5), that fu1fill the linear independence condition, so 
one is forced here to take a pragmatic approach and 
assume the condition to be true unless the final results 
preve the contrary. 

It is interesting to point out that one can give more 
convenient properties to the matrix W¡¡ by making a 
change of basis to sorne linear combination over the 
functions <P¡a with j flXed. When discussing the proper­
ties of such a choice of new basis functions one is in 

the realm of the theory of effective hamiltonians. 
Only in a few cases are explicit solutions to eqs. 

(15) known [ 4], and although the equations may 
always be sol ved numerically, one would most often 
resort to sorne perturbative scheme. When solving the 
system by the iteration method one obtains degener­
ate Rayleigh-SchrOdinger perturbation theory [1], 
which we now discuss. 

Both h and V have characteristic scale factors Sh 
and S v whose quotient gives the perturbation parame­
ter 

A.=Sv/Sh. (24) 
It is therefore convenient to write 

e1 =She¡, Vzm =Svvzm, W¡¡ =Shw¡¡, (25) 

Rk¡ = ók¡ 1¡ + A.akj [Rk¡ � v¡z R¡¡ -� vkl R¡¡ J, 
(26) 

where 

if k= j' 

=(ek -e1)-1, if k=t-j. (27) 
Defining the pth arder approximation Rif) by 

Rr = E -,.._P Rjf) , 
1 p=O J 

(28) 

from eq. (26) it is easily preved that Rg) satisfies the 
recurrence relations 

(0) Rk¡ =ók¡1¡, 

(p) [ "" (p-1) Rkj = akj - 'f vkz R¡¡ 
p-1 
" (q) "" (p-1-q) J + LJ Rk¡' LJv1·¡R¡¡ , 
q=l 1 

p�l. (29) 

In the same fashion from eq. (20) it is obtained that 

Up to second-order terms in Rk¡ one gets 

(1)- (1) -w11 -v11, Rk¡ - -ak¡vk¡, 

wJ7) = -� v¡kakfVkf, 

(2) - "" 2 Rk¡ -ak¡ '¡' vk1a11v11-ak¡vk¡'�¡¡, 

w��) = �v·kak·vk1arvr - E v·ka�·vk·v .. , ll k,/ 1 1 J 1 k 1 J J JI 

(30) 

(31) 

where it is seen that the first non-hermitian terms in 
W¡¡ appear in third order of perturbation theory. 

One may also solve the generating equations using 
modified iteration methods [8] or other algorithms 
as the one used at the end. 

In order to illustrate the formalism we will discuss 
its application to the case of the Stark effect of a rigid 
planar rotator. The system is particularly interesting 
because: (a) In the absence of applied electric field t 
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all states except the ground one are doubly degenerate; 
(b) the degeneracy of the mth excited state is removed 
only in the 2mth order of perturbation theory; (e) the 
exact solutions are known. 

Let I be the rotator's moment of inertia, L its or­
bital angular momentum, and p its dipole moment 
which líes on the plane normal to L. As only the com­
ponent of E normal to L contributes to the energy, 
one may take without loss of generality the x axis 
along E and the z axis along L. Then the total hamil· 
tonian may be written 

H=Li/21 - p·s = -(fí2/2l) d2/d4>2 - pe cos 1/>, (32) 
where 4> is the azimuthal angle. The Schrbdinger equa­
tion is here exactly soluble [9,10] as eq. (1) leads to 

(d2fdu2 + a- 2q cos 2u)f(u) =O, (33) 

a= 8!Ejh2, q = -4Ipeffí2, <P(I/>) = f(l/>/2), (34) 

which is the canonical form ofMathieu's equation 
[11]. We now take 

h = -Sh(Lzlh)2, V= Sv2 cos 1/>, 

Sh = tt2f2J, Sv = -pe/2. (35) 

From eqs. (2), (6), (35), (24) and (25) it is found 
that 

e0 =O, e1=P, �Po =(2tr)-112, 

��'!+ = tr-1/2 cosjlj>, ��'i- = tr-1/2 sinjlj¡ , 

A=-Ipejfí2=q/4, j=1,2,3, ... , (36) 
v00=0 ,  v01=(2112 O)o11, v10=vb 1, 
vzm=(ozm-l + ozm+l)1, l,m= 1 ,2, .. . , (37) 
where (2 1/2 O) is a row matrix and 1 is the unit 2 X 2 
matrix. The degeneracy índices a, b = +,- correspond 
to the sign of the eigenvalues of the reflection opera­
tor ay such that 

Gyg(IJ>)=g(-1/>), Gy lf'O =¡p0, Gylf'j± =±¡pj±. (38) 
As ay commutes with H the total wavefunction <P 
may be taken to be a sirnultaneous eigenfunction of 
both operators. One may therefore set equal to zero 
all non-diagonal elements in Rki• Uk¡ and W¡¡· 

Using eqs. (31) we obtain 
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l::i.o/Sh = woo = -2A2 + �A4 + ... , 

1::!.¡ +/Sh = W¡ +,1 + = � A2 - (763/21 6) A4 + ... , 

1::!.1_/Sh = w1_,1_ = -�A2 + (5/216)A4 + ... , 

1::!.2+/Sh = w2+, 2+ = (2/15)A2 + (4 33/13SOO)A4 + ... , 

1::!.2_/Sh =w2_,2_ =(2/15)A2-(317/13500) f...4+ ... , 

1::!.¡±/Sh = W¡±,j± = [2 /(4j 2 -1)] A2 

+ [(20j2 +7)/2{4j2 -1 )3 (j2 -1)] A4 + ... ' 

j>2 . (39) 

Because the perturbation v connects only adjacent 
1evels, all odd-order terms in A ought to vanish. The 
results eqs. (39) coincide with those obtained by 

Mcl..achlan [11] in a completely different fashion. It 
may be seen that the lowest order in which the degen­
eracy of the <P¡+ and <P1_ states is removed is that in 
which the matrix product v10 v01 appears for the first 
time in the expansion (30). This happens in the 2jth 
order of perturbation theory, and the resulting split· 
tings turns out to be 

(!:!.¡ + - 1::!.¡_)/Sh = 2f...2 ' 

2 2 2· (!:!.¡+- !J.¡_ )/Sh = (2 /j )(a¡¡ 1 (X¡¡ 2 ··· CX¡2Cl¡1) A 1 • 

r� 1, (40) 
an expression which has not been given before and 
seems difficult to obtain in any other way. One may 
also write without difficulty the coefficients Rk:t, j± 
and from them Uk±,j±. For this purpose one may 
either normalize exactly the Rk±,j± coefficients by 
using eq. (6) or, being more consistent with the per­
turbation scheme, normalize them to the desired order 
by an expansion of eqs. (22) and (16) in a manner 
similar to that of eqs. (2 8)- ( 30 ). 

Because the coefficients Rk±,j± de crease very 
rapidly when k increases, a simple approximation is to 
solve eqs. (15) assuming that they vanish from a cer­
tain value of k onwards. As an illustration we wil1 ap­
proximate the ground-state energy and coefficients 
takingRk+,O =O for k;;;;;. 2. Remembering that by defi­
nitionR00 = 1, and making use of eqs. (15), (20), (22) 
and (16), it is obtained 
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R1+,0 = [1 ± (1 +8X2)1/2]j2 3/2A., 

f:.o/Sh = 21/2;>..Rl+,O ' 

TT - (1 2 )-1/2 
voo - + Rl+,O • (41) 

where according to the lirniting condition (17) one 
should take inR1+,0 the lower sign in the square root. 
For X= 2 (q = 8), a value which is well outside the 
range of perturbation theory, one obtains 

fl0/Sh = -2.4, u00 = 0.77 , U¡+ o = -0.64, ' (42) 

to be compared with the rounded exact values [11 , 
pp. 31,32] 

fl0/Sh = -2.7 , u00 = 0.71 , U1+ 0 = -0.67 , ' {43) 

a remarkable agreement for such a crude approxima­
tion. The precision increases very rapidly if one allows 
higher coefficients to be non-vanishing. Notice that 

from eq. (39) one would obtain fl0/Sh = 48. 
In conclusion, it has been shown that Rayleigh­

Schrodinger perturbation theory is just a particular 
way (iteration method) of solving the generating 
equations, but by no means the only one. 
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