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A fomalism is presented in which both the degenerate and nondegenerate cases can he 
treated in the same fashion. Nonlinear integral equations are writtem for the perturbed 
wavefunctions, which lead to the usual formulas when solved by iteration. The method 
provides a simple way to set-up to any desired o r d e ~ e n i l a r  equations for the euergy 
shifts and zeroth-order perturbed wavefunctions. 

L ET H0 be the unperturbed Hamiltonian and 
+,, 6, its eigenfunctions and energy eigen- 

values 
H0 +m = Em +m, (1) 

where the %'S may have any degree of degen- 
eracy. Upon introduciag a perturbation V, the 
Schrodinger equatiou reads 

We now look at any of the unpertnrbed energy 
levels, e.g., e, degenerate of order f. Cal1 +a, 
<Pb (a, b = 1, . . ., f )  the eigenfunctions belong- 
ing to c., and +,, the ones belonging to any 
other energy level. Taking them orthonor- 
malized: 

Under the perturbation V, the degeneracy of r, 
will, in general, be only partially lifted. Let E. 
( a  = 1, . . ., f ) be the energy levels into which 
e. is split (severa1 of tbem may be equal), and 
+a the corresponding f linearly indepeudent 

eigenfunctions. If we let V go to zero, the E. 
will coalesce into e, and the $. wiil go into 
some linear combination of the h. The calcu- 
lation of the right zeroth-order perturbed wave- 
functions J.:' is the basic problem in degenerate 
perturbation theory, one that does not arise in 
the nondegenerate case. 

we can remite Eqs. (1) and (2 )  for the levels 
of our interest: 

(Ha - € 0 )  +a = 0, (5a) 

(Ha-r . )b=(&-V)$b,  (5b) 

where a, b = 1, ..., f. As a result of Ho - q, 
being a Hermitian operator, +, and the right 
member of Eq. (5b) are orthogonal (see Ap- 

The eigenfunctions of Ho provide a complete 
basis for the discrete spectrum (to which we are 
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restricting ourselves) so that we can write 

The first sum in the right member is the zerotli- 
order approximation $y 

Our problem is to find the coe5cients Uab and 
U,, in Eqs. (7)  and (8). 

It is always possible to choose the $,, in such 
a way that the zeroth-order wavefunctions turn 
out to he orthonormalized. Therefore, take 

As can be seen from the formula immediately 
below, this choice implies that tbe are not 
orthonormalized [see also Eq. (17) 1, 

Of course, we have to take proper care of this 
before doing any actual calculations. We intro- 
duce this trivial complication because Eq. (9)  
will lead to great simplifications in our formulas. 

Upon multiplication of Eq. (5a) with Uob 
and additiou over b, we obtain 

( H O  - c o )  *y = 0; (11) 

and, from Eqs. (11) and (5b) and the hermi- 
ticity of H0 - 6, 

These are al1 the equations needed for solving 
our problem. 

Expanding Eq. (12) and taking into account 
the fact that 

(*'a'>*b) =aa, 
we obtain 

(*':)> W b )  = A m  a,,b. (14) 

For a = b the latter leads to an integral equa- 
tion for the energy shifts 

We now find an expression for the pertubed 
wavefunctions +a in terms of the $2'. After 
that we solve a secular equation for the A,. 
from which we are able to determine the Uab 
and from this S#:'. This accomplished, the prob- 
lem is completely solved. 

If we introduce Eq. (8) into the left member 
of Eq. (5b), we get 

- - (16) 
01 

where we have used Eqs. (11) and (1).  Upon 
scalar multiplication with +a, and introducing 
A, from equation (15), 

We thus obtain the following nonlinear integral 
equation for qo: 

that can be solved by iteration if J.';) is Imown. 
Successive replacements of the right member 

of Eq. (18) into the scalar products give rise to 
terms of increasing degree in matrix elements 
of V. By degree we mean here the number of 
matrix elements that appear in a given term. 
Characterizing the degree by a superscript, the 
wavefunction $a may be written 

an expression that is given in the standard text- 
books as arising from a suitable Taylor's ex- 
pansion over V. In our case we may think of tbe 
superscript k as characterizing in some way 
tbe "order of smallness" of the term. 

It is now easy to obtain the recurrente ex- 
pression 
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For instance, 
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that, upon addition of a normalization term, 
these are analogous to the usual formulas for 
the nondegenerate case. We have written 

where the prime indicates that we are taking 
matrix elements between the linear combinations 
( 7 )  instead of the simple eigenfunctions +,. 
When the latter is the case, drop the primes. 
The other matrix elements are defined in a simi- 
lar way. 

In the nondegenerate case, the energy shifts 
can be obtained easily from Eq. (15). Let +, 
be the zeroth-order wavefunction, whicli is now 
unique. Then, by iteration, 

For the degenerate case, we cannot obtain 
the energy levels in such a simple way. In order 
to simplify the treatment, we first introduce some 
modifications in the formulas. If we use Eq. 
(14) instead of (15) when reducing (16), we 
obtain 

From here, we obtain (notice that we are now ing system of integral equations: 
dropping the primes ) : 

c u: u,, = S,,. (30) + C  vm va, v,, 
,,o (~ . -%)( .o - fB)  

We now use Eq. (6) .  Keeping b fixed and 
- A ti,] = O. (32) 

letting a run from 1 to f, we obtain the follow- 
~ l , d  
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The necessaiy and sufficient condition for the 
existente of nontrivial solutions for Um is that 
the determinant of the matrix corresponding to 
the square brackets in (32) be zero. We can 
disregard the lower index in A because the same 
secular equation is obtained, regardless of which 
is chosen. Solving this determinant, one obtains 
the f energy shifts. These, together with the 
orthonormality conditions (9),  allow us to cal- 
culate the f sets of coe5cients U., which give 
the third-order approximation to the zeroth-order 
wavefunctions. With them, we can finally de- 
termine the fourth-order approximation to the 
pertwbed wavefunctions from Eq. (27) .  

In a second-order approximation with V, = 
0, the secular determinant reduces to the well- 
known one for the removal or degeneracy in 
second orderl: 

det [ 2 Va - A s., ] = O. (33)  
a €0 - 'o 

The formalism allows to obtain a better in- 
sigbt of several hypothesis widely used in per- 
hirbation theory. Thus, it is clearly seen how to 

method of diagonalizing the matrUr of V be- 
tween the +? is correct up to first order, but 
that this is not necessarily so in higher orders. 
Finally, the formalism clearly exhibits the fact 
that the zeroth-order perturbed wavefunctions 
depend on the chosen order of approximation. 

Equation (32) should prove usefd in all &ose 
problems in which second- and higher-order 
terms are important. This is the case, for in- 
stance, in paramagnetic resonante, where a 
formula resembling our own has been used3 al- 
though it was obtained from a variational ap- 
proachP 

The author has also found that it is possible 
to arrive to an identical expression by using 
Bloc& operational approa~h.~ 

Let A he a Hermitian operator. If the equa- 
tion 

A + = O  

has nontrivial solutions 4 # O and A$ = f, 
where f is known, then 

obtain "expan~ons" of the enerb levels and (+,f) = (+,A$) = (A+,+) =o, 
pertwbed wavefunctions in powers of V. Eqna- 
tion (U)) shows that the degenerate case may be where we have used the hermiticity in the third 

treated in the same way as the nondegenerate step. That is, 

one provided that we use the right zeroth-order ( + , f )  =o. ( A l )  
per&bed wavefunctions. The method of the Note that because ( A l )  is a result of the hermi- 
iuversion of Ha - EO is contained in Eq. ( 1 7 ) .  ticity of A it is a consequence of the boundary 
From Eq. (14) the reader can verify that the conditions imposed upon 4 and $. 
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