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Introduction 

Almost two centuries ago the german physicist Georg Simon Ohm 
(1789-1854) used the electrochemical cell recently invented by Alessandro 
Volta to experiment with circuits. He discovered then that the potential 
difference V along a segment of a circuit is proportional to the current 
intensity I traversing it1: 

 V = R I. (1) 

The law that now bears his name introduced for the first time the 
proportionality constant that we now call electrical resistance R, characteristic 
of a segment of circuit of which the prototype, though a very specialized one, 
is a resistor. Ohm verified its experimental validity for right cylinders of 
circular cross section, but the linear relationship is valid for all sorts of 
geometries, including regions of (theoretically) unlimited extension. 

The validity of eq. (1) depends on the fulfillment of the relationship 

    

J = σ


E, (2) 

the local Ohm’s Law that relates current density   

J  to electric field   


E  in a 

material of electric conductivity σ. This relationship is valid only for solid, 
isotropic and homogeneous conducting materials in low intensity applied 
electric fields, in the absence of applied magnetic fields, thermal and stress 
effects. In liquids the diffusion of inhomogeneous electrolytes may lead to the 
appearance of internal electromotive forces. In anisotropic materials, like 
single crystals,   


J  and   


E  are not colinear and σ  is a tensorial magnitude. In 

inhomogeneous solids, where σ  is a function of position, additional effects 
like contact potentials may come into play. Semiconductors and 
superconducting materials are excluded because additional considerations 
are needed. In the presence of applied magnetic fields the Hall Effect must 
be taken into account, and the application of heat and stress introduces other 

                                            
1 G. S. Ohm, Schweig. J. 46, 137 (1826). 
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effects2. For high intensity electric fields σ  is a nonlinear function of E and 
the proportionality between V and I does not hold. 

Many people consider that resistance is only a dissipative property 
characteristic of a particular segment of circuit. The dissipative character is 
universally valid because eq. (2) is a consequence of the fact that —in the 
low velocity range where drag is proportional to the first power of velocity— 
the drift velocity of a particle submitted to friction is proportional to the applied 
force3. On the other hand, it is not rigourosly true that resistance is a 
characteristic of an isolated part of a circuit. As will be shown in detail, 
resistance is a consequence of the flow of current which stems from an 
electric field distribution determined by the reciprocal influence of the 
geometry of the segment of circuit under analysis (the “resistor”) and the rest 
of the circuit. Resistance is a localized property only as refers to current flow, 
but a property of the whole circuit in respect to the origin and configuration of 
the electric field. The non-local character is usually hidden in theoretical 
analysis because in the few soluble cases discussed strong non-explicit 
assumptions are made about the influence of the rest of the circuit. From the 
practical point of view the non-local effects are masked because resistors 
and circuits are —or rather, should be— designed to minimize them. 

The calculation of R has been made only for a few geometries4,5,6,7 
apart from the isotropic and homogeneous right cylinders of circular cross 
section studied by Ohm. An apparently more general expression is obtained 
when the resistance is related to the capacity of homogeneous solid 
conductors embedded in dielectrics8,9. This approach transfers the burden to 

                                            
2 J. F. Nye, Physical properties of crystals (Oxford University Press, England, 1979), 

Fig. 10.1.a. 
3 J. R. Reitz, F. J. Milford and R. W. Christy, Foundations of Electromagnetic Theory 

(Addison-Wesley, Reading, 1979), pp. 140-154. 
4 V. C. Poor, Electricity and Magnetism (Wiley, London, 1931), pp. 81-83. 
5 J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), pp. 14-15. 
6 W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism (Addison-Wesley, 

Reading, 1955), p. 108. 
7 P. Badoux, Electricité, vol. 1 (Presses Académiques Européennes, Brussels, 1959), 

pp. 54-55. 
8 E. Weber, Electromagnetic Fields (Wiley, New York, 1950), p. 68. 
9 R. W. Wangness, Electromagnetic Fields (Wiley, New York, 1979), pp. 237-238. 
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the calculation of capacities, but has the merit of making obvious that 
resistance is a property of the whole circuit, a fact well stressed for capacity. 

A proof that eq. (1) follows from eq. (2) may be obtained from linearity 
arguments10, but the method neither needs nor provides values for R. An 
explicit general expression of R for bodies of arbitrary shapes could clarify 
the notion or resistance, but none is found in the best known textbooks on 
Electromagnetism or in journals devoted to physics education. The 
importance of the subject certanly merits the thorough discussion that will be 
given here. 

Laws governing current distribution 

Under an applied voltage a current distribution is stablished inside a 
material. After some delay —the duration of the transitory regime— the 
macroscopic current density acquires a time-independent but space-
dependent value, the steady-state regime value    


J(

r ) . From eq. (2) it follows 

that current lines and electric field lines coincide. In most electric circuits of 
practical importance voltage is applied to a piece of conductor by wires of 
small cross-section. The small contact surface of these wires with the piece 
of conductor is usually taken to have constant potential, which simplifies 
calculations but is probably untrue in most cases, as illustrated below for the 
sphere. 

Complete circuits of practical interest are solved using different 
methods than those discussed below, and will not be considered in this 
paper. The focus is put here on the resistance of a piece of conductor that is 
part of a larger electric circuit. The two connections of this piece with the rest 
of the circuit —that in what follows will be called the electrodes— must be 
equipotential in order for the potential difference V between them to be well 
defined. The current I passing through the piece must also be well defined, 
so there cannot be ramifications, leaks or surface emission of electrons. The 
electrodes and the external walls must determine a closed surface 
completely enclosing the conducting material whose resistance is to be 
determined. 

                                            
10 C. A. Coulson, Electricity (Oliver and Boyd, Edinburgh, 1965), p. 79. 



 4 

The two main causes of the behavior of currents are the large 
long-range value of Coulomb forces —which forces the electric neutrality of 
materials— and the mobility of electrons in conductors —which allow them to 
freely displace. Any macroscopic volume density of charge ς  inside the 
piece of conductor would make free electrons to move away from the regions 
where it is negative, in such a way that its value inside the material will finally 
vanish. For the electrostatic case the consequence is that the electric field 
becomes zero inside and that any net charge is located on the conductor's 
surface. In the steady-state regime the interior charge density ς  vanishes —
a fact whose consequence is eq. (11)— but the electric field inside the 
conductor does not, behaviour that requires explanation. 

The two Maxwell´s equations that determine the electric field are11 

 
   
∇i

E = ς

ε0

, ∇ ×

E = − ∂


B
∂t

,  (3) 

where 0ε  is the permittivity of vacuum12 and   

B  the magnetic induction. In the 

steady-state all time derivatives vanish and the only source of electric field is 

 ς.  As discussed before, there cannot be charges localized within the 
material. It is customary to assign fictive charge densities to the electrodes, 
but this is only a way of replacing the rest of the circuit by assigning values to 
the normal electric field there, as will be done in the next section. As there 
are no macroscopic charges inside the material, it follows that   


E  is there 

solenoidal: 

    ∇ i

E = 0.  (4) 

From here it follows that the discontinuity of the normal component of 
the electric field across the external surface of the segment of circuit is13 

 int ext

0

.E E λ
ε⊥ ⊥− =  (5) 

                                            
11 The International System of Units (SI) is used throughout this paper. 
12 Remember that the treatment is restricted to the isotropic linear range. 
13 Reitz and Milford, op. cit., p. 90. 
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λ, the surface density of charge on the walls, cannot be determined here 
because the calculation of the external electric field requires solving the 
whole circuit. 

In dissipative electric circuits the electric field does not vanish inside the 
conductor because the power supplied by electromotive forces maintains 
macroscopic net charges on their terminals14 —and therefore its potential 
difference— through continuous forced replacement of the moving charges. 
One may argue that fields are also determined by the charges on the 
conductor's external surface, which is true, but this is not enough, as is 
illustrated by the vanishing value obtained in the electrostatic case. 

As all magnitudes become time-independent when the steady-state 
regime is stablished, the second of eqs. (3) becomes 

    ∇ ×

E = 0,  (6) 

so that the electric field is an irrotational vector. A mathematical property of 
such vectors is that they may be derived from a scalar potential φ. Therefore 

    

E = −∇φ,  (7) 

   ∇ i ∇φ = ∇2φ = 0.  (8) 

The minus sign in eq. (7) is chosen so that the forces on positive 
charges tend to move them from higher to lower potentials, as masses do in 
gravitational fields. Eq. (8) is known as Laplace’s equation and its solutions 
are called harmonic functions. The harmonic potential φ is determined by 
solving Laplace’s equation with the boundary conditions that will be given 
next15. 

From eq. (7) it follows that the potential difference V between any two 
points    


r1 ,    

r2  —work done against the field— is always given by 

  !  
V = −


E i d


l

r1


r2∫ = ∇φ i d


l

r1


r2∫ = φ(


r2)−φ(


r1),

 (9) 

                                            
14 The terminals might coincide with the electrodes, but it is no necessarily so. 
15 Stratton, op. cit., pp. 222-223. 
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where   !d

l  is the vectorial element of line, and the value of the curvilinear 

integral is independent of the path chosen to go from the first to the second 

point. This path-independence property is the main characteristic of a field 

derived from a scalar potential φ  (conservative field) and will be used below. 

An important consequence of eq. (6) is that the tangential component of 
  

E  is continuous across the interface of two materials16,17, 

 
   

E

(1) =

E

(2),  (10) 

which explicitly shows that as the electric field does not vanish inside the 
conductor (case in which there will be no electric current), it does not 
uniformly vanish outside it. 

From eq. (4) it follows that 

    ∇ i

J = 0.  (11) 

A mathematical consequence of this solenoidal character of   

J  is that18 

 
   


J i d


S = 0

S
∫∫ ,  (12) 

where S is any simply connected closed surface enclosing part of or the 
whole conductor, and   d


S  is the vectorial element of area. The closed surface 

S may be taken to be the one formed by two arbitrary cross-sections of 
conductor, S1 and S2, and the part of wall surface Σ  in between them. In that 
case eq. (12) becomes 

 
   


J i d


S =


J i d


S

S1

∫∫ +

J i d


S

∑
∫∫ +


J i d


S

S2

∫∫ = 0
S
∫∫ .  (13) 

                                            
16 Reitz and Milford, op. cit., p. 90. 
17 P. Baruch, M. Hulin and J. F. Pétroff, Electricité et Magnetisme (Hermann, Paris, 1972), 

pp. 150-151. 
18 Reitz and Milford, op. cit., p. 13. 
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As no current flows through the walls —current leaks and thermoionic 
effects being excluded— in the steady-state regime   


J  is tangential there, so 

that 

 
   


J i d


S

∑
∫∫ = 0 and


J i d


S

S1

∫∫ +

J i d


S

S2

∫∫ = 0,  (14) 

Current intensity I is defined as the absolute value of the flux of   

J  over 

any cross-section S, 

 
   
I =


J i d


S

S
∫∫ , (15) 

and, as a consequence of eq. (14), eq. (15) always gives the same value for 
any cross-section S. 

Because   

J  is tangential to the walls, from eq. (2) the interior normal 

component of the electric field vanishes there, 

    

E⊥ =


E i n̂ = 0, (16) 

where   n̂  is the unit vector normal to the wall. This condition, which is not 
initially valid, as was previously discussed, is obtained by the accumulation of 
surface charge at the walls during the transitory regime, as given by eq. (5). 
Eq. (16) does not hold at the electrodes —in most practical cases only a 
virtual border with the rest of the circuit— where the inverse condition holds: 
the normal component of   


J  must be different from zero and the tangential 

component of the field should vanish. This is so because the electrodes are 
by definition equipotential, so the electric field is there normal although not 
necessarily of constant magnitude. An striking example of this behaviour is 
the charged conducting disk discussed by Jackson19. 

The two electrodes and the external walls determine a closed surface. 
A harmonic potential φ is completely and uniquely detetermined by the 
previously given specifications20; unfortunately, there is no general procedure 

                                            
19 Jackson, op. cit., pp. 89-93. 
20 Jackson, op. cit. , p. 16. 
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for determining the potential for such mixed boundary conditions, so 
ingenuity is required21. The following calculation is such an example. 

Electrical resistence of a sphere 

A good illustration of the difficulties arising in the calculation of 
resistance would be a case with non-uniform current densities, variable 
cross-sections and variable lengths of field-line segments. In most such 
cases the potential can only be expressed in terms of a series expansion in 
terms of some symmetry adapted basis functions. Comprehension is better 
and the use of graphics gets simpler when the potential can be expressed in 
terms of familiar functions. The only case found by the author which fulfills all 
these conditions is the spherical piece of resistive material discussed next. 

A sphere of radius a is 
connected to the rest of the circuit by 
two cilindrical wires of radius b much 
smaller than a: 

                          a b ,                  (17) 

wires that make contact with the 
sphere at opposite ends of a 
diameter, as shown in Figure 1. 

Two boundary conditions 
determine φ. The first one is its 
constant (and different) value over 

 

Figure 1. Resistive sphere. 

each of the two electrodes. The second one is that its normal derivative over 

the rest of the surface of the sphere must vanish. 

Due to the wires’ small cross-section, in a first approximation the fictive 
charge distribution on the electrodes that replaces the rest of the circuit may 
be taken to be two point charges Q and –Q located on the z axis. The 
coordinates of these charges are respectively -a and a, chosen so that 
current I flows in the positive sense of the z axis (see Figure 1). 

                                            
21 Jackson, op. cit., p. 90. 
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The potential  φ
Q  generated at field point    


r (r,θ,ϕ)  by these fictive 

charges is22 

   
φQ(r,θ,ϕ) = k1Q

1
d+(r,θ)

− 1
d−(r,θ)

⎛

⎝⎜
⎞

⎠⎟
,
 (18) 

where d±, the distance from field point   

r  to charge Q± , is given by 

   d± = α ± , α ± = ρ2 + (z ± a)2 = r 2 + a2 ± 2a ⋅ r ⋅cos(θ).  (19) 

where 

   r = x2 + y 2 + z2 , ρ = x2 + y 2 , z = ρ ⋅cos(θ). (20) 

The distances from the surface of the sphere to the charges are 

   d±(a,θ) = 2 a 1± cos(θ).  (21) 

As z  ≤ a, for points along the z axis (r = 0) it follows that 

   d±(0,z) = a ± z. (22) 

For points on the equatorial plane (θ = π /2 or z = 0) 

   d±(r,π / 2) = r 2 + a2 = ρ2 + a2 = d±(ρ,0). (23) 

As the system is invariant under any rotation ϕ  around the z axis 
(azimuthal symmetry), the potential is ϕ-independent. This condition is only 
approximately valid because for real circuits the wires carrying I from the exit 
to the entry point don´t usually preserve the symmetry. 

In spherical coordinates the components of the electric field   

E  are23 

 

   


E = −∇φ(r,θ,ϕ) = Er r̂ +Eθ θ̂ + Eϕϕ̂,

where Er = − ∂φ
∂r

, Eθ = − 1
r
∂φ
∂θ

, Eϕ = − 1
r senθ

∂φ
∂ϕ

,
 (24) 

                                            
22 In SI units k1 = 1/4πε0 = 9⋅109·N·m2/C2. 
23 Stratton, op. cit., p. 52. 
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and   
Eϕ = 0  for systems with azimuthal symmetry. 

Therefore, the non-vanishing components of the electric field derived 
from φ Q are 

 

  

EQ
r (r,θ) = k1Q

r + a ⋅cosθ
d+

3 − r − a ⋅cosθ
d−

3

⎛

⎝⎜
⎞

⎠⎟
,

EQ
θ (r,θ) = −k1Q ⋅a ⋅sin(θ)

1
d+

3 + 1
d−

3

⎛

⎝⎜
⎞

⎠⎟
.

 (25) 

  

EQ  does not fulfill the boundary 

condition eq. (16). This may be seen both 
from the structure of its field lines in Figure 2 
(the dashed ones) and from the value of the 
normal component Q

rE  on the surface of the 
sphere (see eq. (21)): 

      
  
EQ

r (a,θ) =
k1Q
2a

1
d+(a,θ)

− 1
d−(a,θ)

⎛

⎝⎜
⎞

⎠⎟
.     (26) 

If this were the initial potential, charge would  

 

Figure 2. Field and equipotential 
lines of   


EQ 24. 

accumulate on the surface of the sphere until ( , ) 0rE a θ = . This gives rise to 
an additional harmonic potential ψ  such that 

  
  
Eψ

r (a,θ) = − ∂ψ
∂r r=a

= −
k1Q
2a

1
d+(a,θ)

− 1
d−(a,θ)

⎛

⎝⎜
⎞

⎠⎟
= − 1

2a
φQ(a,θ) = −EQ

r (a,θ)  (27) 

cancels the normal component of   

E  on the surface of the sphere. One has to 

find the potential ψ  satisfying eqs. (27) and (8) everywhere inside the 
sphere, except at the poles. 

                                            
24 In units of k1Q the equipotential lines, from bottom to top, correspond to the following 

values of potential, each half or twice the value of the preceding one, excluding 
0: -2.8, -6.4, -3.2, -1.6, -0.8, -0.4, -0.2, 0, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8. 
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Landau and Lifchitz25 pointed out that if f(r,θ ) is a solution of Laplace’s 

equation, so is 
0

f( , ) .
r drr

r
θ∫  One may then take26 

 

  

ψ (r,θ) = 1
2

φQ(r,θ)
0

r

∫
dr
r

=
k1Q
2

1
d+(r,θ)

− 1
d−(r,θ)

⎛

⎝⎜
⎞

⎠⎟0

r

∫
dr
r

=
k1Q
2a

sinh−1 a − r cos(θ)
r sin(θ)

⎛
⎝⎜

⎞
⎠⎟
− sinh−1 a + r cos(θ)

r sin(θ)
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

=
k1Q
2a

ln
d−(r,θ)+ a − r cos(θ)

r sin(θ)
⎛
⎝⎜

⎞
⎠⎟
− ln

d+(r,θ)+ a + r cos(θ)
r sin(θ)

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
k1Q
2a

ln
d−(r,θ)+ a − r cos(θ)
d+(r,θ)+ a + r cos(θ)

⎛

⎝⎜
⎞

⎠⎟
,

 (28) 

where ln is the natural logarithm, result that may be verified by derivation. 
The expression of ψ in terms of sinh-1 is more convenient for calculating the 
components of   


E , but is indeterminated at r = 0 where one has to use 

l’Hôpital´s rule27 to show it actually vanishes there. The last expression, 
obtained from a well known identity28, clearly shows that ψ  is finite 
everywhere except at the poles —where it has a logarithmic divergence— 
and is, in cylindrical coordinates, an odd function of z. 

It may be verified that, barring the poles, ψ  satisfies Laplace’s equation 
in spherical coordinates for azimuthal symmetry29: 

 2 2
2 2

1 1 sin( ) 0.
sin( )

r
r r r r

ψ ψψ θ
θ θ θ

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞∇ = + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (29) 

                                            
25 L. Landau and E. Lifchitz, Electrodynamique des milieux continus (Éditions Mir, Moscow, 

1969), Chapter 3, p. 132. This property, whose proof is sketched in a footnote, is probably 
restricted to the case where f(0,θ ) = 0. 

26 The primitives are given by G. A. Korn and T. M. Korn, Mathematical Handbook for 
scientists and engineers (McGraw-Hill, New York, 1968, 2nd edition), p. 950, eq. 258. 

27 Korn and Korn, op. cit., p. 119, eq. (4.7.8). 
28 M. Abramowitz and I. Stegun, Handbook of mathematical functions (Dover, England, 

1965, 9th edition), p. 87, eq. (4.6.20). 
29 Stratton, op. cit., p. 52, last of eqs. (95). 
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The components of the electric field contributed by ψ  are 

 

  

Er
ψ (r,θ) =

k1Q
2r

1
d−(r,θ)

− 1
d+(r,θ)

⎡

⎣
⎢

⎤

⎦
⎥,

Eθ
ψ (r,θ) = −

k1Q
2ar sin(θ)

r + acos(θ)
d+(r,θ)

+ r − acos(θ)
d−(r,θ)

⎡

⎣
⎢

⎤

⎦
⎥.

 (30) 

Therefore, the total potential φ is 

 

  

φ = φQ +ψ

= k1Q
1

d+(r,θ)
− 1

d−(r,θ)
+ 1

2a
sinh−1 a − r cos(θ)

r sin(θ)
⎛
⎝⎜

⎞
⎠⎟
− sinh−1 a + r cos(θ)

r sin(θ)
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= k1Q
1

d+(ρ,z)
− 1

d−(ρ,z)
+ 1

2a
ln

d−(ρ,z)+ a − z
d+(ρ,z)+ a + z

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

 (31) 

The field lines of   

E =


EQ +


Eψ  are 

tangential to the surface of the sphere and the 

equipotential lines are there normal, as shown 

in Figure 3. The electrodes are taken to be the 

nearly semi-spherical surfaces of radius b 

(see Figure 4), the hollows in Figure 3. 

Although barely noticeable, the “semicircles” 

here, where b ≅  0.085 a, are slightly larger 

than those in Figure 2. 

 

Figure 3. Field and equipotential 
lines of   


E =


EQ +


Eψ 30. 

In order to find the resistance R it is necessary to evaluate both the 
current intensity I given by eq. (15) and the potential difference V  between 
electrodes given by eq. (9). 

I is most simply evaluated over an equipotential cross-section, the 
simplest being the equatorial plane where —being an odd function of z— φ 
vanishes.   


J  is there normal to the plane (see Figure 3), its magnitude being 

                                            
30 The equipotential lines correspond to the same values as those in Figure 2. 
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
J(r,π

2
) = −Jθ (r,π

2
) = −σ ⋅Eθ (r,π

2
) = −σ EQ

θ (r,π
2

)+Eψ
θ (r,π

2
)

⎡

⎣
⎢

⎤

⎦
⎥

= k1Qσ a 1

d+(r,
π
2

)3
+ 1

d−(r,
π
2

)3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ 1

2a
1

d+(r,
π
2

)
+ 1

d−(r,
π
2

)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= k1Qσ 2a

(r 2 + a2)
3
2

+ 1

a(r 2 + a2)
1
2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.

 (32) 

From eqs. (15) and (32) 

 

   

I =

J i d


S

Σ
∫∫ =


J dS

Σ
∫∫ = − Jθ (r,π

2
)dS

Σ
∫∫ = − 2πrJθ (r,π

2
)dr

0

a

∫

= k1Qπσ 2a

(r 2 + a2)
3
2

+ 1

a(r 2 + a2)
1
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

d(r 2)
0

a

∫

= k1Qπσ 2adu

(u + a2)
3
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
+ du

a(u + a2)
1
2

0

a2

∫0

a2

∫
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= k1Qπσ (4 − 2 2)+ (2 2 − 2)⎡
⎣

⎤
⎦ = k1Q2πσ .

 (33) 

The value of the up to now unknown constant Q is now determined, 
being 

 
  
k1Q = I

2πσ
.  (34) 

The potential difference V across the sphere is given by 

    V = φ(

r + )−φ(


r − ), (35) 

where  !
r +  is any point on the positive electrode and  !

r −  any point on the 
negative one. The two electrodes are the end surfaces of the 
quasi-cylindrical leads through which current I enters and leaves the sphere, 
the resistance being well defined only if these surfaces are equipotential. As 
φ is an odd function of z, 

   φ(ρ,−z) = −φ(ρ,z),  (36) 
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a simple choice for V is 

   V = φ(b,−z0)−φ(b,z0) = 2φ(b,−z0).  (37) 

The circle of radius b is the intersection 
of the external wall of each lead with the 
surface of the sphere, as shown in Figure 4. 
The drawing, where the magnitude of b is 
grossly exagerated, identifies the value z0 at 
which the disk of radius b intersects the z 
axis. It then follows that 

 
  
z0 = a2 − b2 = a 1− b

a
⎛
⎝⎜

⎞
⎠⎟

2

. (38) 

Using eqs. (31), (34) and (37) one obtains 

 

Figure 4. Geometry 
of electrodes. 

 
  
V = 2φ(b,z0) = I

πσ
1

d−(b,z0)
− 1

d+(b,z0)
+ 1

2a
ln

d+(b,z0)+ a + z0

d−(b,z0)+ a − z0

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.  (39) 

The electrical resistance is thererefore given by 

 
  
R = V

I
= 1
πσ

1
d−(b,z0)

− 1
d+(b,z0)

+ 1
2a

ln
d+(b,z0)+ a + z0

d−(b,z0)+ a − z0

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,  (40) 

which becomes infinite when the radius b of the wires goes to zero, and 0 
when b = a, as expected. 

For   b a  one gets (see eqs. (38) and (19)) to order b/a 

 

  

z0 = a 1− b
a

⎛
⎝⎜

⎞
⎠⎟

2

≅ a,

d+(b,z0) = b2 + (z0 + a)2 ≅ b2 + 4a2 = 2a 1+ b
2a

⎛
⎝⎜

⎞
⎠⎟

2

≅ 2a,

d−(b,z0) = b2 + (z0 − a)2 ≅ b,

ln
d−(b,z0)+ a − z0

d+(b,z0)+ a + z0

⎛

⎝⎜
⎞

⎠⎟
≅ ln b + a − a

2a + a + a
⎛
⎝⎜

⎞
⎠⎟
= ln b

4a
⎛
⎝⎜

⎞
⎠⎟
.

 (41) 
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As, from l’Hôpital´s rule, 

 
  
lim
x→0

− ln(x)
1/ x

= lim
x→0

−1/ x
−1/ x2 = lim

x→0
x = 0, (42) 

near the origin 1/x is always larger than -ln(x), so that the term 1/b in R 
predominates over the rest. Figure 5 shows that the relative error made by 
disregarding the last two terms in eq. (40) is less than 2% for b/a ≤ 0,01, and 
always less than 17% in the whole range 0 < b ≤ a. 

Figure 5. Relative error of the approximate formula eq. (43). 

Therefore, 

 
   
R = V

I
≅ 1
πσb

when b
a
1.  (43) 

One should analyze if the given solution reflects general properties of a 
spherical resistor or is an artifact of the peculiar way in which it was obtained. 
The main objection that may be raised is the "indentation" of the sphere, the 
substraccion of a nearly semispherical cap, regardless of its size. One may 
wonder if a suitable configuration of the external circuit may provide 
equipotential surfaces that match the spherical surface. Only numerical 
calculations can answer this, but the author thinks it would not be possible in 
normal circumstances, barring the use of contact potentials, electrets, 
extremely high electromotive forces or the use of some kind of special 
devices. The reason is that current tubes are, as shown by eq. (2), electric 
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field lines of infinitesimal cross section. These tubes tend to be as smooth as 
possible because only localized large volume charges, can sharply bend 
them. As equipotential surfaces are normal to current tubes, we cannot 
expect them to approximate to the shape of the spherical surface without the 
aforesaid sharp bending. As shown in Figure 6, normal circuit leads would 
then require the  electric field to have a sharp discontinuity on the line where 
they meet the surface, discontinuity that can only be produced by a localized 
charge surface  which is naturally produced only in sharp edges. 

 

Figure 6. Normal versus tangential field: the problem of electrodes. 

Linear relationship of V and I 

Field lines are the natural paths for the calculation of V, as equipotential 
surfaces are the natural surfaces for the calculation of I. If one uses a 
coordinate system based on them, all calculations are greatly simplified. The 
equations that define such a set of coordinates are well known31 though the 
functions relating them to the standard cartesian ones would in general be 
non-elementary trascendental functions. For the previously discussed case of 
the sphere, for instance, such a set is defined by the surfaces 

 
  
ϕ = tan−1 y

x
⎛
⎝⎜

⎞
⎠⎟
= constant, φ = constant,  (44) 

                                            
31 See, for instance, N. Kemmer, Vector analysis. A physicist´s guide to the mathematics of 

fields in three dimensions (Cambridge University Press, England, 1977). 
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and the surface generated by the rotation around the z axis of the field lines 

defined by the differential equation32 

 .
r

dr r d
E Eθ

θ=  (45) 

Such a set of coordinates may be found for any body whose shape can 
be described by a mathematical function, but not after the problem is fully 
solved. It would be cumbersome to use if the functions involved are 
unfamiliar, but the analysis made with it would be as sound as that made in 
the usual cartesian coordinates. The purpose of this section is not to evaluate 
the actual value of a resistance in terms of such a coordinate system but, 
assuming its existence, to find an explicit integral expression of the constant 
that linearly relates V and I for any well defined piece of circuit. 

A set of orthogonal curvilinear coordinates u1, u2, u3 is defined such that 
the surfaces u1 = constant (in what follows, the u1-surfaces) are equipotential. 

1( )uφ  is then independent of u2 and u3, but not   

E  and   


J  as may be seen 

from eqs. (48). The remaining curvilinear coordinates are defined so that the 
field lines are the intersection of the u2 and u3-surfaces and both are 
orthogonal to the u1-surfaces. 

The differential elements ds1 of length along a field line, da1 of area on 
an equipotential surface and dv of volume are then given by33 

where 

  

ds1 = h1du1,,

da1 = h2h3du2du3,
dv = h1h2h3du1du2du3

hj (u1,u2,u3) =
∂x1

∂uj

⎛

⎝
⎜

⎞

⎠
⎟

2

+
∂x2

∂uj

⎛

⎝
⎜

⎞

⎠
⎟

2

+
∂x3

∂uj

⎛

⎝
⎜

⎞

⎠
⎟

2

, (46) 

and xj (u1,u2,u3) gives the standard cartesian coordinates in terms of the 
curvilinear ones. 

                                            
32 Kemmer, op. cit., p. 42. This surface of revolution is a consequence of the azimuthal 

symmetry. 
33 Stratton, op. cit., pp. 38-50. 



 18 

For the spherical coordinates r, ϕ, θ  (see Figure 1) these functions are 

 
  

x = r sin(θ)cos(ϕ), y = r sin(θ)sin(ϕ), z = cos(θ),
hr = 1, hϕ = r sin(θ), hθ = r.

 (47) 

the well known factors giving the usual differential lengths dr, r sin(θ) dϕ  and 
r dθ. 

As φ  is a function only of u1, eq. (7) may be written in differential form 
as 

 
  
E = − dφ

ds1

= − 1
h1

dφ
du1

, or − dφ =E ⋅h1du1.  (48) 

If (see Figure 7) 

    φ0 = φ(u1
(0)), φf = φ(u1

(f )),  (49) (50) 

and 

   φ0 > φf  (51) 

the potential difference V is given by 

   
V = (φ0 −φ f) = dφ

φf

φ0∫ = E ⋅h1du1u1
(0)

u1
( f )

∫ .  (52) 

Current I is given by 

       
  
I = J da3

S
∫∫ = J h2h3 du2 du3

S
∫∫ ,   (53) 

 

Figure 7. Segment of circuit showing 

the two electrodes, an intermediate 

cross-section and a single field line. 

where S is an equipotential cross-section. 

Notice that, by definition of the coordinate system,   

J  is normal to S, so 

that its normal component there equals its magnitude, the sign following from 
the choice   φ0 > φf : 

    

J⊥ =


J = J.

 (54) 

In order to find both V and I it is necessary to succesively integrate over 
the three variables, in a way that resembles a volume integral. 
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This suggests analyzing the following expression: 

   
Ω = J h1h2 h3 du1du2 du3∫∫∫ . (55) 

Ω would yield Ohm’s law if the integral could be evaluated in the following 
two different orders: 

 
  
Ω = h2 h3 du2 du3∫∫( ) σ E h1∫ du1( ) = h1du1∫( ) J h2 h3 du2 du3∫∫( ).  (56) 

The right factors would then yield σ V in the first member and I in the second 
one. The left factors would then be, respectively, the cross-section area A 
and the lenght L of the enclosed field line segment. For this to be true very 
stringent physical and geometrical conditions must be met. The piece of 
conductor must have equipotential cross-sections of constant area; all field 
line segments must have the same length; h1 must be a function only of u1; 
h2 and h3 must both be independent of u1. Otherwise, integrations cannot be 
done as indicated. 

The previous geometrical conditions are met for right cylinders of 
circular cross-section A and length L. It then follows that, in cylindrical 
coordinates, 

 u1 = z, u2 = ρ, u3 = ϕ, h1 = 1, h2 = 1, h3 = ρ. (57) 

The physical conditions are met if all cross-sections are equipotential 
and the electric field inside the cylinder is independent of ρ, ϕ. These are 
non-trivial conditions. As mentioned before, ϕ independence is never 
rigorously obtained because in real circuits the return circuit for I usually 
breaks azimuthal symmetry.   


E  is uniform inside the conductor if its normal 

value at the electrodes (the base and top of the cylinder) is uniform. As 
discussed at the beginning, the equipotential character of the cross-sections 
forces the tangential component of   


E  to vanish there but imposes no 

condition on its magnitude (the normal component of eq. (54)). The effect is 
minimized in resistors because the cross-section of its leads is much smaller 
than that of the body, but the field distribution near its ends is certanly not 
uniform and the equipotential surfaces there are certanly not plane. The 
difference in the resulting value of R is not important in normal circuits 
because the values of resistance have in most cases a tolerance greater 
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than 1%. On the other hand, the effect may be important in microcircuits, 
where designers have to carefully analyze this problem. 

Under these conditions, and taking into account eq. (46), for a cylinder 
eq. (56) gives 

 

  

Ω = h2 h3 du2 du3∫∫( ) σ ⋅E ⋅h1∫ du1( ) = A ⋅σ ⋅V

= h1du1∫( ) J ⋅h2 h3 du2 du3∫∫( ) = L ⋅ I,
 (58) 

so that 
  
R = V

I
= L
σ ⋅A

. (59) 

For the previously discussed reasons, the value eq. (59) —invariably 
quoted in Electricity textbooks—, is not an exact one, at most a very good 
approximation. In the knowledge of the author the right cylinder is the only 
case where eq. (56) may be used to obtain an explicit expression for R. But 
—as we shall immediately see— integral Ω may nevertheless be used to 
explicity prove the validity of Ohm’s Law. To this end use will be made of the 
first mean value theorem for integration that follows34: 

If f(x) and g(x) are continuous functions of x and g(x) ≠ 0 for x1 ≤ x ≤ x2, 

 
  

f(x)g(x)dx
x1

x2∫ = f(c) g(x)dx
x1

x2∫ , where x1 ≤ c ≤ x2.  (60) 

Eq. (60) is used twice to obtain I from eq. (55), taking into account that 
from eq. (14) it follows that the surface integral is independent of u1: 

 

  

Ω = J ⋅h1h2 h3 du1du2 du3∫∫∫

= h1(u1,u2,u3)h2(u1,u2,u3)h3(u1,u2,u3)J(u1,u2,u3)du2 du3
S(u1)
∫∫

⎛

⎝
⎜

⎞

⎠
⎟

u1
(0)

u1
( f )

∫ du1

= h1(u1,c2,c3) h2(u1,u2,u3)h3(u1,u2,u3)J(u1,u2,u3)du2 du3
S(u1)
∫∫

⎛

⎝
⎜

⎞

⎠
⎟ du1u1

(0)

u1
( f )

∫

= I h1(u1,c2,c3)du1u1
(0)

u1
( f )

∫ = L(c2,c3)I,

where uj
min ≤ c j ≤ uj

max for j=2, 3.

 (61) 

                                            
34 Korn and Korn, op. cit., p. 119, eq. (4.7.5). 
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S(u1) is the equipotential cross section at u1 (see Figure 7) and uj
min, uj

max are 
the minimum and maximum values of uj on S(u1). L(c2,c3) is the length of the 
segment of flux line u2 = c2, u3 = c3 comprised between the equipotential 
surfaces S(u1

(0) and S(u1
(f)). 

In a similar fashion integral Ω may be evaluated for V giving 

 

  

Ω = J ⋅h1h2 h3 du1du2 du3∫∫∫ = σ h1h2 h3 E du1u1
(0)

u1
( f )

∫⎛⎝⎜
⎞
⎠⎟

du2 du3∫∫

= σ h1h2 h3

1
h1

∂φ(u1)
∂u1

du1u1
(0)

u1
( f )

∫
⎛

⎝⎜
⎞

⎠⎟
du2 du3∫∫

= σ h2(c1,u2,u3)h3(c1,u2,u3)du2 du3∫∫( ) dφ
φ(0)

φ( f )

∫⎛⎝⎜
⎞
⎠⎟

= σV A(c1), where u1
(0) ≤ c1 ≤ u1

(f).

 (62) 

A(c1) is the area of the equipotential cross-section at u1
 = c1. 

It then follows that 
  
R = V

I
=

L(c 2 ,c 3 )
σ A(c1)

. (63) 

The formula is similar to the simple one for the right cylinder of circular 
cross-section, the difference being that both the length and the cross-section 
are those of some intermediate line field and cross-section. For the case of 
the sphere one may use it to obtain the following upper and lower bounds: 

 
  

2a ≤ L(c 2 ,c 3 ) ≤ πa, πb2 ≤ A(c1) ≤ πa2,

2a
πσ a2 = 2

πσ a
≤ R ≤ πa

πσ b2 = a
σ b2 .

 (64) 

When the potential is known, the intervening magnitudes may be 
evaluated using eqs. (9), (15), (61) and (62): 

 

   

L(c2,c3) = Ω
I
=

∇φ dv∫∫∫
∇φ i d


S

S
∫∫

,

A(c1) =
Ω

σ ⋅V
=

∇φ dv∫∫∫
φf −φ0

.

 (65) 
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The cumbersome calculation of the numerator is not necessary for 
evaluating the resistance, which may be obtained only from the 
denominators. Eq. (65) is only given here to show that L(c1) and A(c2,c3) may 
be evaluated if one wishes to better understand the factors that lead to a 
particular value of electrical resistance. 

Conclusions 

The equations and boundary conditions that govern the flow of current 
under applied voltages have been thoroughly discussed, showing that the 
problem requires solving Laplace’s equation with apropriate boundary 
conditions. An explicit calculation was made of the equipotential surfaces and 
field-current lines for the case of a sphere, and its resistance was calculated 
under quite reasonable assumptions. The calculation shows that the 
boundary conditions on the external surface and electrodes of a selected 
piece of conductor cannot always be met and that the value of the electrical 
resistance R depends critically on the rest of the circuit. The understanding of 
the main factors that determine R paved the way for the next step, the 
general discussion of the linear relationship between current I and potential 
difference V. 

With the help of a volume integral of J  expressed in suitable curvilinear 
coordinates, and a mean value theorem of integral calculus, the linear 
relationship between V and I —resistance R— may be generally expressed 
in terms of some effective length and cross-section of the chosen piece of 
circuit. Although the expression is not necessarily appropiate for determining 
the actual values of R —for which gives only gross lower and upper 
bounds— it explicitly puts into evidence the main factors that govern its 
value. 
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