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All elfstive Hamiltonians fulfilling three v a y  general mnditions a n  derived. It is s h w n  that they sll stcm both 
from a transfomation operator implicitly ddined by a nonlinear cquation, snd an arbitrary "diagonal" and 
nonsingular operator. The canonical c ase is discussed, as well as the particular resvietions that luid to the prcvious 
sdiemes of Blafh. d a  Cloizeaux, and 16rgensen. 

1. INTRODUCTION 11. THE GENERAL EQUATIONS 

No one can deny the fundamental role played We consider the discrete eigenvalue problem 
by effective Hamiltonians in the quantum theory 
of matter. To name some of the more importad 
cases: Nuclear shell, atomic shell, Foldy-Wou- 
thuysen, Born-Oppenheimer, crystal  and ligand 
field, Pariser-Parr-Pople, Bardeen-Cocper- 
Schrieffer, Hubbard, Anderson, Heisenberg, 
Ising as well a s  al1 other spin Hamiltonians used 
in the theory of magnetism, a r e  nothing but ex- 
amples of suitably defined effective Hamiltonians. 

Mathematical (symmetry) or  physical arguments 
a re  often used in order to reduce the number of 
terms appearing in model Hamiltonians, s o  that 
comparison with experiments rnay be possible. 
But in the end a full understanding of the problem 
requires tracing back the origin of each term in 
the model Hamiltonian by assimilating it with 
a well-defined effective Hamiltonian, difficult 
as this last  step rnay be. 

Severa1 reviews have been made of the s ~ b j e c t ' ~ ' ~  
wherein abundant references rnay be found, but 
somehow the problem does not seem to have been 
studied in i ts  full generality. In a previous work' 
i t  was discussed how one rnay derive al1 effective 
Hamiltonians H, which satisfy three very general 
conditions [see Eqs. (6)-(8) below]. It was shown 
there that Hs is not uniquely determined due to 
the arbitrariness in the election of a diagonal 
[in the senee of Eq. (16)l and nonsingular oper- 
ator 6). In what follows we discuss how to solve 
in detail the different cases as well as the con- 
nections with the more usual schemes and, in a 
superficiai way, with perturbation theory. It turns 
out that there a r e  two cases from which al1 others 

of a given Hermitian Hamiltonian H, within the 
vectorial space i2 spanned by a finite subset of 
eigenvectors of a soluble par t  H,. That i s ,  if 

H,la),=e,ia),, ,(alB>,=6., , (3) 

where the eigenvalues e. and the eigenvectors 
la), a re  known, then í2 is spanned by the subset 
{(u),}, where a = 1 ,2 ,  ..., n. 

The spectral decomposition of H, is 

where P, is the projector over the manifold í2, 
spanned by the eigenvectors la),,= 1 e , j )  e=  1,2,  
...,g, ) with g,-degenerate eigenvalue e.  That 
i s  , 

The advantage of using projectors is that the for- 
mulation is then independent of the specific elec- 
tion of the degenerate subset { l  e,j)}, thus making 
the bookkeeping easier  and the notation simpler. 

Experience shows that a judicious choice for 
the effective Hamiltonians H, associated both 
with H and H, fulfilis the following conditions. 

(a) H and H ,  have the same set  of eigenvalues, 
that is, i f  

may be derived: the unit-diagonal case,  which Hla)=Emla),  
turns out to be the generalization of Bloeh's 
approach,' and the canonical-symmetric case then 

which is the generalization of des  Cloizeaux'se 
and Soliverez's7 approach. Al1 other effective 

H S I ~ ) S - E -  l a h .  (6) 

Hamiltoniana may be related to some of these (b) There is a one-to-one correspondence be- 
two cases. tareen the eigenvectors of H and H,, 
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where S is the nonsingular tranaformation oper- 
ator called by some authors the wave operator. 

(e) H ,  has no matrix elements connecting eigen- 
vectors belonging to different eigenvalues of H,, 

PeHPep,.= bP#Q,. (8) 

As there are  in the literature severa1 examples 
of non-Hermitian effective Hamiltonians, 5'' S 
is not necessarily unitary. It is sometimes con- 
venient, though not required in our treatment, 
to impose the adiabatic condition 

It should be noticed that, because of condition 
(c), each ( a ) ,  belongs to a single manifold ne. 
Therefore the eigenvalue problem of H ,  can be 
solved separately within each manifold n,. The 
eigenvectors l a ) ,  a r e  the effective eigenvectors 
or  good zeroth-order eigenvectors, and are  not 
necessarily orthogonal unless H ,  is Hermitian. 
The remainder Vin Eq. (2) is not required to be 
small except when one takes a perturbative ap- 
proach. The latter is not always the case because 
sometimes either one can find an exact solution, 
or  one wishes to generate effective Hamiltonians 
with disposable parameters to be adjusted from 
experiment. The latter is, for instance, the case 
of the spin Hamiltonians used in the theory of 
magnetism, the former being unfortunately a 
very rare  event. 

From Eqs. (6) and (7) it follows that if { l a ) , }  
is a complete set  of basis vectors, then 

H ,  = S I H S  . (10) 

There is an infinite number of effective Hamil- 
tonians that satisfy Eqs. (6) and (7). Assume that 

where A and B are nonsingular operators. From 
Eqs. (6), (7), (lo), and (11) it then follows that 

H , l ~ ) A = E , l a ) , ,  l a ) = A I a ) , ,  (13) 

thus showing that H A  is as good an effective Ham- 
iltonian as  H , .  One of our goals is to fully charac- 
terize the family of transformation operators that 
fulfill the given conditions. 

It turns out that it is convenient to write 

H,=H,+ w, .  (14) 

The operator W ,  is often called the level-shift 
operator because 

as it  is easily seen from Eqs. (6), (14). and (3). 
It is now convenient to define the diagonal part 

(A) of an operator A with respect to H ,  byssg 

Then A is said to be diagonal if A = (A). It follows 
from Eqs. (4), (S), and (14) that H, ,  H,, and W ,  
a r e  diagonal: 

Upon multiplication with S by the left, and taking 
due account of Eqs. (14) and (2), Eq. (10) becomes 

We now have to solve Eq. (18) for S and W , .  
It should first be mticed that no information is 
contained there about 6).  This comes about, be- 
cause for an arbitrary operator A ,  i t  always 
happens that 

[H,, @ ) l =  o .  (19) 

On the other hand, i t  may be easily verified that 
the nondiagonal part A - @) is fully determined 
from [ H , , A ] ,  being given bp 

where h, is the superoperator 

Equatim (20) is the generalization to operators 
of the well-known vector identity 

Z=ii(ii.a3-iix(Kxa3, 

where ¡i is an arbitrary uzit vector. The oper- 
ator H ,  playa the role of h, and the superoper- 
ators (), [S, p h ,  play the role of the dyadic 
operators hh, h x , hx. From this analogy it  seemi 
reasonable to cal1 h,([H,,A]) the normal part of 
A (with respect to H,). From Eqs. (18) and (20) 
i t  follows that 

Taking the diagonal part in Eq. (18) we obtain 
for the level-shift operator the condition 

where use has been made of Eq. (19) and of the 
properties, 

Equations (22) and (23) implicitly define S as a 
fnnction of H,, V, and ( S ) .  The indetermination 
in the election of S discussed In connection with 
Eqs. (11)-(13) is now seen to reduce to the in- 
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determination in the election of (S). From Eq. 
(23) lt i s  evident that W, is not fully defined if 
(S) i s  singular. Therefore it i s  necessary that 
(S)* exists, and Eq. (23) then gives 

The operator (S) has a very simple physical 
meaning that we now discuss. U la), i s  an effec- 
tive eigenvector belonging to O,, from Eqs. (7) 
and (16) i t  may be shown that 

p e l a ) =  (S)la)s. (26) 

From its nonsingular character i t  is thus seen 
that (S) connects in a one-to-one correspondence 
the eigenvectors of H, with the projections of the 
eigenvectors of H. 

If R is the particular transformation operator 
such that 

it i s  seen from Eq. (26) that 

while from Eqs. (IR), (14), and (24) 

W,= (S)*WR(S). (30) 

The problem is  thus reduced to the s M y  of the, 
unit-diagonal operator R ,  and i t s  corresponding 
level-shift operator W,. From them one may 
obtain al1 the operators S and Ws through the 
use of Eqs. (29) and (30), 4, making an up to 
now arbitrary choice of the nonsingular operator 
(S). Equation (29) shows that al1 transformation 
operators have the remarkable property that 
S(SY1 i s  independent of S (see the discussion 
below). 

111. THE UNIT-DIAGONAL CASE 

We will now discuss the determination of R and 
W,. From Eqs. (22), (2'0, and (23) one easily 
ohtains 

R=l+h,(R(VR)-VR),  (31) 

WR= (VR). (32) 

Equation (31) determines R as an implicit func- 
tion of H, and V. The projected version of this 
equation was first  found by B10ch5 using an ap- 
proach completely different from our own. His 
operators U and A correspond to our RPe and 
W,P,, respectively. 

In a few cases,  it 1s possible to solve R ex- 
plicitly,' but more often a perturbative approach 

1s used. In the last case one makes successive re- 
placements of the second member Eq. (31) into 
the argument of h,, and collects terms of the  
same degree in an order parameter A .  It is then 
seen that writing HR to order Am is equivalent 
to eliminating to that order the nondiagonal part 
of V in Eq. (10). It was from such a point of view 
that Van V l e ~ k ' ~ - ' ~  f i r s t  introduced the idea of an 
effective Hamiltonian. 

The problem of the class of remainders V such 
that Eq. (31) defines a nonsingular operator R 
(or a linearly independent se t  of eigenvectors 
la),) i s  to our knowledge st i l l  unsolved. In what 
follows we shail always assume the existence 
0f R-'. 

From Eq. (32) i t  is easily seen that W, i s  not 
Hermitian. Therefore i t s  eigenvectors 1 u), , 

w R J a ) ~ = u m J a ) R  9 (33) 

a r e  not orthogonal and, as may be seen from 
Eq. (28), not even normalized. It then follows 
that, in general, 

R ( ~ I B ) R = @ R ) = U >  (34) 

where g, i s  the metric matrix of the hasis set 
{la),}. The eigenvalue equation (33) determines 
JaX, up to an a s  yet indeterminate coefficient 
c,. in order to fix its value we have to use the 
orthonormality of the eigenvectors la ) ,  that 
is , 

ja)-Rla), ,  (alB)=.(alRIR [ B ) R = b s .  (35) 

This indirect method can be made explicit in the 
following fashion. From the eigenvalue equation 
for W, we first  determine a se t  { I  a),} of initiai 
eigenvectors where we make some arbitrary but 
explicit choice of normalization, the metric ma- 
tr ix g, being given by 

k & = l ( a p ) Z .  (36) 

The eigenvector 1 a), is then related to J a ) ,  by 

la)n=c.Ia)i , (37) 

where al1 c, may be taken to be real  and positive. 
in order to make use of Eq. (35) it i s  convenient 
to use the matrix representation of R in the basis 
II">ih 

(Riku=t(a(RJfi) i  (38) 

and also to define the m a t r i x g  with element6 

Cae= 6 m s ~ a ,  Ct=C. (39) 

As may be easily verified, the unit operator can 
be written as 

1 = & b ;  Ia')iCgi);ibi(BrI . (40) 
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Inserting (40) into Eq. (35) and using Eqs. (37) 
and (39) we obtain 

~=(e:.~:.&)*l". - - (41) 

The square root of matrixR:.g,? .E, always ex- 
i s ts  as long as ( a ) (  (that is ,  I a X )  i s  acomplete 
se t  of linearly independent vectors. In that case 
gi is an Hermitian positive definite matrix, and 

*12 exists. Then Eq. (41) may be rewritten as gl 

- c = [f.&/= .23,)' .g:l-,]*l=, (42) 

where it is now seen that the argument i s  aiso 
a positive definite matrix aa  long as R is  non- 
singular. Therefore, i t  i s  now known how to 
normalize the /a),% which a r e  thus completely 
determined. 

Once the 1 ak's a r e  known, the metric matrix 
g ~ ,  can be written in terms of RJp using Eq. (41) 
withC=', 

RR.&.RJI=L, 

that is, 
t &=&.S. (43) 

It is now explicitly seen how the completeness 
and linear independence of the basis {la&} are  
equivalent to the non singular nature of R. 

In order to fully establish the connections be- 
iween our approach and that of K a t ~ " * ~  and Bloch5 
one s b u l d  work in terms of biortbonormal bases. 
For that purpose we introduce the new basis 

{l Ü),} defined by 

R(alB)R=n(dB)e =ama. (44) 

For the benefit of the readers not familiar with 
the concept of biorthonormal bases, we should 
mention that they a re  very often found in the 
physics literature disguised under names such 
a s  reciprocal bases (crystallography), bras  and 
kets (quantum mechanics), or covariant and con- 
travariant bases vectors (electromagnetism). 
They a r e  the natural concepts whenever one is 
dealing with a nonorthogonal basis. 

We will now prove that the 1 Ü),'s a re  nothing 
but the properly normalized eigenvectors of W',, 

where 

w$$= (vR)'= (R'v) , (46) 

l a ) =  (R')*I ü), . (47) 

In order t o d o  s o  we have to find f i rs t  the connec- 
tions betweenR', R-', andR. 

We s t a r t  discussing the equation definingRi. 
Taking the Hermitian adjoint of Eqs. (31) and (32) 
we find 

and Eq. (46). 
Next we consider the equation defining R ' .  

Upon multiplication of Eq. (10) by the right with 
S-', and making use of Eqs. (14) and (2) it follows 
for S=R , 

From Eq. (20) we obtain 

and taking the diagonal part  in Eq. ( 4 9 ,  

WR (R-')= (R-'V). (51) 

Notice that, in general, @*)+ @y'= l. Writing 

where, for the time keing, we assume the exis- 
tence of (R-')*, replacing into Eqs. (50) and (SI), 
T is  found to satisfy the equation 

while 

Comparing Eqs. (53) and (48) we see  that T and 
R' satisfy the same equation. It therefore followa 
that T = R t  and 

where it is seen that (R') i s  a positive definite 
operator whenever R is  nonsingular. From Eqs. 
(33), (46), and (56) we obtain 

w#kIa),=&E,R'RIa), , (51) 

thus showing (R'R la),} to be the eigenvectors of 
. Finally, taking into account Eqs. (35) and 
(1) it i s  easily seen that 

R(aIR'R18)R= (a18)=6,a , (58) 

thus proving 

to be the vector biorthornormal to [a),. Equation 
(35) leads immediately to Eq. (47) thus proving 
al1 our previous equations. 

Equation (59) may be used to transform any 
expression written in terms of biorihonormal 
bases so that i t  contains only 1 a), and R. Thus 
Bloch's operatorsS A, B, 8 ,  and P may be written 
as 
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K a t ~ ' s ' ~ - ' ~  approach is based upon a perturbative 
expansion of P ,  which ohviously turna out to be 
more cumbersome than that of R .  The irnportance 
of his work is that he gives cri teria for the con- 
vergence of the perturbation series.  

At first sight it might seem curious that a non- 
Hermitian operator like W, should have real  
eigenvalues. A little reflection shows that this 
is nothing but a trivial consequence of Eqs. (33), 
(45), and (44). 

IV. THE CANONICAL FORMULAnON 

One may raise at  least tato objections to the 
use of non-Hermitian effective Hamiltonians. The 
first is mainly of a practica1 nature: non-Hermi- 
tian operators a r e  clumsy because of the nonortho- 
gonality of its eigenvectors. The second is a more 
fundamental one: While in an exact formulation 
the eigenvalues of W, a r e  always real, this does 
not necessarily hold for the approximate effective 
Hamiltonians obtained from perturbation theory. 
Therefore, if a not too hiih price is  to be paid, 
one should always prefer to deal with Hermitian 
effective Hamiltonians. 

For this purpose it is best to s tar t  discussing 
the orthonormalization of set {lo),}. There is  an 
infinite number of transformations yielding an 
orthonormal se t  of basis vectors {la),}, all  of 
which a r e  obtained when varying the unitary oper- 
ator U in the following equation: 

where 

ut=u-' ,  

u(aIBX=n(aIRtRIB)R=ó.B. (63) 

According to Eq. (28) the la),'s a re  permissible 
effective eigenvectors i f  

(S)= (R 'R)-'IV-' . 
As Eq. (55) shows that R'R is a diagonal operator, 
therefore U should also be diagonal, 

U =  (U) ,  (64) 

thus giving 

@)= ( R ' R ) . L I ~ U ) - ~ ,  

where 

(U)-'= (U)' 

The corresponding effective Hamiltonians [ ~ q .  
(30)l a r e  

fied to be Hermitian, 

w',=w*. 

The transformation operator 

S=R ( S ) = R ( R % ) - ~ / ~  (u)-' P 

where 

(U)-'= (U)', 

then turns out to be unitary, 

s-'=st. (70) 

Equations (66) and (69) therefore define the more 
canonical transformations leading to 

Hermitian effective Hamiltonians. -~ ~ - 

An evident choice is 

which corresponds to L h d i n ' s  symmetric ortho- 
normalization" of the la),'s. This was the im- 
plicit election made by des Cloizeauxs and the 
present authorT in order to obtain Hermitian ef- 
fective Hamiltonians. From Eq. (65) this choice 
is equivalent to the condition 

(S)= (S)'. (12) 

Other possible unitary schemes have been dis- 
cussed by Kleini and ~drgensen'  but we will not 
deal with them here. For al1 nonperturbative 
schemes it is easy to establish the connections 
with our general approach. This is not s o  for  
those schemes which a r e  essentially perturbative 
in nature, a s  that of Van Vleck,Lo'2 because then 
the choice for (S) is not explicitly made and it 
i s  not easy to unravel it. Nevertheless , ~ d r g e n -  
sena has discussed how to transform both Van 
Vleck's and Prima'sa'O methcds s o  that ihey both 
satisfy Eq. (72). We give below the relationship 
beiween some of Jdrgensen's operators and our 
own, thus showing them to be redundant: 

G = P , W p e ,  u=SP,, p=P.(S)P,, 

It is remarkable that ~ d r g e n s e n  was able to find 
most of our results in spite of the complications 
intrcduced by his constraining to a projected for- 
mulation. 

V. CONCLUSIONS 

It has been shown that under the very general 
conditions [ ~ q s .  (6)-(E)] there a re  an infinity of 
effective Hamiltonians equivalent to the original 
one. A11 of them a re  obtained from the transfor- 
mation operator R defined by Eq. (31) and an ar- 
b i t r a r ~  nonsingular diagonal operator (S). Al1 which from Eqs. (56) and (46) may be eaaily veri- 
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operators appearing in the effective Hamiltonian 
schemes devised by different authors may be 
written as functions of R ,  (S), and the projection 
operators P,. Al1 canonical formulations reduce 
t o  some specific choice of the unitary diagonal 
operator (U) in Eq. (69). Perturbation theory 
follows from an iterative solution of Eq. (31), and 
the corresponding expansions for the related oper- 
ators. No study was made of the class of remain- 
d e r s  Y ,  Eq. (2), such that Eq. (31) defines a non- 
singular operator R , which remains an open prob- 
lem. There does not seem to be much room for 
relaxing the conditions [ ~ q s .  (6)-(a)], s o  it i s  
expected that the effective Hamiltonians here 
defined a r e  the most general ones. 

In referring to the relative merits  of the different 
choices fo r  (S), 1 do not feel that any general pre- 
scription can be given. Numerical considerations 
might make preferable the unit-diagonal scheme 
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(S)= 1, where the number of operations involved 
in any calculation a r e  reduced to a minimum. If 
Hermitian effective Hamiltonians a r e  required, 
in certain cases an Hermitian (S) may be con- 
venient, corresponding to a symmetric ortho- 
normalization of the / ir),'s, but in other cases 
a canonical orthonormalization" might be more 
suitable. This can be s o  because, wbile the 
symmetric basis is highly Localized being of the 
Wannier type, the canonical hasis i s  strongly 
delocaliaed, being of the Bloch type." 

No detailed discussion has been made of the 
different perturbative schemes. This is a field 
where there seems t o  be ample room for improve- 
ment, particularly in what refers  to the partial 
summation of terms in many -body systems. This 
field might perhaps profit from the more explicit 
expressions here given for  the freedom in the 
choice of effective Hamiltonians. 

'C. E. Soliverez. J. Phys. C 3 2161 (1969). 
%. Primas, Helv. Phys. Acta-, 331 (1961). 
'H. Primas. Rev. Mad. Phya. s. 710 (1963). 
''J. H. Van Vleck. Phys. Rev. g, 484 (1929). 
"O. M. Jordahl, Phys. Rev. o, 91 (1934). 
"E. C. Kemble, Fundnmentals of Qurmhrm Mechmics 

(Dover, New York, 1937), p. 395. 
"T. Kato, Prog. Thmr. Phys. 4. 514 (1949). 
%. Kato. Prog. Thmr. Phys. 9, 95 (1950). 
'=T. Kato, Prog. Thmr. Phys. 2, 207 (1950). 
"P. O. Lawdin. Adv. Phys. 5 ,  1 (1956). 



Estudios que citan este trabajo: 

Libros 
1. Gilbert Grynberg y Raymond Stora, Tendences actuelles en Physique Atomique vol 1 (North- 

Holland Physics Pub., Amsterdam), p. 155 (1984). 
2. Debashis Mukherjee y Sourav Pal, Use ofcluster expansion methods in the open-shell correla- 

tionproblem, Advances in Quantum Chemistry (Academic Press - Elsevier, ) vol. 20, p. 349 
(1989). El trabajo alude a the Soliverez transformation. 

3. Andrew R. Piich, Photonic component engineering and aplications (SPIE, Orlando, Florida, EE. 
UU.), p. 45 (1996). 

4. Philippe Durand, Jean-Paul Malrieu, Effective Hamiltonians and Pseudo-Operators as Toolsfor 
Rigorous Modelling en Advances in Chemical Physics (Wiley-InterScience, New York), Ab Initio 
Methods in Quantum Chemistry Pari 1, vol. 67, (2007). 

Revistas 
5. Kutzelnigg, J. Chem. Phys. 77,3081 (1982). 
6. Durand, Phys. Rev. A 28,3 184 (1983). 
7. Maynaud et al, Phys. Rev. A 28,3193 (1983). 
8. Kutzelnigg y Koch, J. Chem. Phys. 79,4315 (1983). 
9. Elbio R. Dagotto y Carlos E. Soliverez, Derivation ofmodel Hamiltoniansfor interacting subsys- 

tems ofnonidenticalparticles, Phys. Rev. A 30, 1616-1623 (1984). 
10. Sourav Pal, M. Durga Prasad y Debashis Mukherjee, Development ofa size-consistent energy 

functionalfor open shell states, Theor. C h i .  Acta 66,3 11-332 (1984). 
11. W Kutzelnigg, H Reitz, S Durmaz and S Koch, Direct calculation ofenergy dífferences, such 

as ionizationpotentials, Proc. Indian Acad. Sci. (Chem. Sci.) 96, 177-194 (1986). 
12. P. Piecuch y K. Kowalski, Int. J. Mol. Sci. 3,676-709 (2002). 
13. J. P. Killingbeck y G. Jolicard, The Bloch wave operator: generalizations and applications: Part I. 

The time-independent case, J. Phys. AMath. Gen. 36, R105-R180 (2003). 
14. Ernest C. Hass, Paul G. Mezey y János J. Lakik, Non-empirical SCF M 0  studies on theprotona- 

tion ofbiopolymer constituents, Theor. C h i .  Acta 60,283-297 (1981). 


