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Magnetostatics of Anisotropic Ellipsoidal Bodies
CARLOS E. SOLIVEREZ

Abstract—The demagnetizing tensor formalism for the evaluation of
magnetization and internal field in ellipsoidal bodies of isotropic ma-
terials is extended to the case of anisotropic materials and to the calcu-
lation of the field outside the body.

Ellipsoids are the only known nonhysteretic finite bodies
that become homogeneously magnetized when placed in a uni-
form applied field. The case of homogeneous and isotropic
materials thus shaped has been discussed either in the linear
range or in the saturation limit {1]-[3]. In what follows we
will analyze the case of homogeneous but anisotropic ellipsoids
for the general nonlinear situation. Instead of using the
cumbersome method of separation of variables in ellipsoidal
coordinates, an integral equation will be written for H. A
certain vectorial function will then be shown to satisfy the
equation, thus being the sought after solution.

Let Hy be the uniform applied magnetic field with fixed
sources, H the macroscopic magnetic field, and M the body’s
magnetization. Then [4]

A r 1 1
H(r)=H0+—-VfM(r)'V( ,)dsr,
4 v lr -7

where V operates on r, and the integration is over the body’s
volume V. (For S.I. units set A= 1, and for Gaussian units set
A=4r)

In the general nonhysteretic anisotropic case, M will be a
single-valued vector function of H,

(1)

M(r)y= X(H(r). 2)
It then follows that
H !
H(r)=H, +lv (v j ﬂ——(r,—))d%’), (3)
47 v lr-r|

where a simple property of V has been used. Equation (3)is
the integral equation that uniquely determines H. We now
try the following solution,

H(r=Hy -Ad(r)- C, (4)

where C is a constant vector, and d(r) is a generalized depolar-
ization tensor [5] whose components in Cartesian coordinates
X1, X7, X3 are given by

PR N jds"
T dxgong S lr- ')

When r is an interior point, d becomes the usual demagnetizing
tensor ) whose properties have been fully discussed [3], [6],
and [7]. We use the convention

trace D = 1. (6)

(5)
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As D is constant for ellipsoids, when using (4) X becomes a
constant vector for interior points and may thus be taken out-
side the integral sign in (3). Therefore

A ( ( J‘ a3 ))
Hr)=Hy+—V |V (X(Ho -AD - C) -
4m vlr-rl

=Ho - ?\d(r) * X(Ho -AD - C), (7)

where in the last step use has been made of (5). From (4),
(7), and (2) it is seen that

C=M=X(H, - AD -M). (8)

Therefore, due to the fact that the demagnetizing tensor is
constant for ellipsoids, it follows that the magnetization and
the interior field are also constant. Notice that, when re-
placing Hy, by an adequate effective field, (8) is the starting
point in the molecular field approximation for a single-domain
ferromagnet, where X is usually taken to be proportional to
the Brillouin function [8]. In the linear range (2) may be ap-
proximated by

)

where X is the magnetic susceptibility tensor. Then (8) may
be solved for M giving

M=X-H,

1
M=—a H,

v 0, (10)
m=a-Hy, (11)

where m is the body’s total magnetic dipole moment and « is
the body’s magnetic polarizability tensor

a=V(1+AX-D)' - X=V(X+AD)". (12)

The polarizability tensor that has been previously defined
only for superconducting ellipsoids [9] provides a compact
expression for the torque 7 impressed on the body by the
applied field,

T=Uom X Hy = (e - Hy) X Hy. (13)

As soon as M is determined, either from (8) or from the linear
approximation (10), the magnetic field is also determined both
inside and outside the ellipsoidal body as long as d () is known.
The constant principal values of D (interior d) have already
been tabulated [3], [6]. The exterior values of the depolariza-
tion tensor d may be found in a similar way, deriving them
from the integral

a3’

I(r)=f*f
vlr-r

through (5). I(r) is the electrostatic potential of a uniformly
charged ellipsoid, and has been calculated previously in the
general case [10], [11].

(14)
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Se expresan los campoéeilricosﬁ(?), dentro y fuera de elipsoidales uniformemente polarizadosémnirios de integralesiglicas y
sin necesidad de resolver ecuaciones diferenciales. Las expresioneédidas para materiales honfrgpos cualesquiera, seaati®pos o
anistropos, sean electretos, dietricos o conductores. Se dan las expresionesaigs del campo inducidE(f‘) para esferas diettricas
y conductoras inmersas en campos aplicados constantes y uniformes.

DescriptoresElectrosatica; ecuaciones de Poisson y Laplace; problemasrdeivalor.

The electric fieldsZ (), inside and outside uniformly polarised ellipsoidal electrets, dielectrics and conductors, is given in terms of elliptic
integrals. The derivation, valid for homogeneous isotropic and anisotropic materials, makes no recourse to differential equations. The full
expression of thé”(7) induced for spherical bodies embedded in uniform aplied constant electric fields, either dielectrics or conductors, is
explicity given.

Keywords: Electrostatics; Poisson and Laplace equations; boundary-value problems.

PACS: 41.20.Cv

1. Introduccion materia (en vez de los usuales casos especialeOtdLs-

) ) ) o ) tran la plausibilidad de las leyes invocadas) como resolver sin
Los libros introductorios de electricidad rara vez discuten ehecesidad de ecuaciones diferencialegrito caso conoci-
problema de la electrificamn de cuerpos finitos. Larames (g de cuerpos finitos cuya polarizasieEctrica es uniforme,

la dificultad del @lculo de distribuciones de campog@ti-  |os elipsoides generales, problema dsitamo que resolve-
cos generados por materiales cuyo estado de polasizde:  mos detalladamente en este trabajo.

pende de la misma configuraai final de estos campos. Por

tratarse de un problema que debe resolverse de modo autﬁ- lari .
consistente (la polarizami de una poréin de materia depen- <- Cuerpos con polarizacon permanente

de de los campos de la materia restanésta depende a su El potencial eéctrico V' generado por un volumen de

vez de los campos que genera esa jpoigise deja usualmen- dielectrico con polarizaéin uniformep es
te para cursos avanzados donde se resuelven las ecuaciones

diferenciales a derivadas parciales de Maxwell por&iatdo P.(F
de separadin de variables. Entre los pocos cuerpos detalla- V() = k1 =
damente discutidos en los textos elementales se cuentan las

ﬁi

3 d

laminas de espesor constante y ext@manfinita y los cilin- R (F—7) 4

dros rectos de sedni circular y longitud infinita, siempre =k /// P d’r, (1)
para materiales homégeos e igtropos. La esfera, el cuerpo

finito mas simple, 8lo se resuelve con ecuaciones diferencia- dondek; — 4r/eq — 10~7c? en el Sistema Internacional

les. Resulta entonces quéls en los cursos as avanzados
de electromagnetismo, usualmente no tomados por ingeni
ros, es posible trabajar con cuerpos reales (finitos) y disc
tir importantes comportamientos de iréiereécnico, como el

SI)[1], dondec es la veIomdad de propagéai de las ondas
Jectromagaticas en el vdo y d3 es el elemento diferencial
%Ye volumen. Como

—

analisis de las condiciones en que su polariaagiuede ser v 1 __r=r
uniforme, los efectos de la anisotiagmateriales cristalinos) |7 — | 7=

y el comportamiento de conductores finitos en presencia dg . . .
: . onde el gradiente se toma respecto de la variable vectorial
campos aplicados uniformes.

S , o ; F r ribir (1 la forma:
La principal rabn de la dificultad para resolver casoasn 7, e puede reescribir (1) de la forma

realistas es que los cursos introductorios de electricidad se V(f) = —P-V¢(F), donde

dictan usualmente antes de que los estudiantes conozcan los

métodos del aflisis vectorial. La situabn esh cambiando O(F) = ky /// ﬁi 437, 2
en las universidades donde los cursos de electricidad y mag- \

netismo se dictan inmediatamente a continblaae los de R
aralisis vectorial. Esto permite tanto dar demostraciones gedondeP> es el versor adimensional en la dirently sentido
nerales rigurosas de las propiedades electroitags de la de P, P - V es el operador derivada en la diréntiP y ¢(7)
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es —salvo una diferencia de unidade®l potencial edctri- En esta notadin la Ec. (6) se escribe simplemente de la
co generado cuando el volumeresa cargado con densidad formaE(7) = —4x kyn(7) - P, 0 mas expicitamente,

de carga uniformeP/[1]**. Este mismo resultado puede ob-

tenerse mediante la superpo8itide dos distribuciones de E, N (7) Ny (7) Moz (T) Py

carga uniforme idénticas cuya distancia se hace tender Ey | ==47k1| nyo(r) nyy (7) ny=(7) || Py |- (8)

a 0 mientras se mantiene constante el prodgtton = P E, N2z (7) zy( ) Mz (T) P,

(definicibn materatica de dipolo puntual).

De la relacbn entre campo y potencialéadtrico se tiene Se ve asque el problema delaculo del campo ektrico

E(F) producido por un volumen de materia con polariza-

que ) ) . .
o, A cion uniformeP se ha reducido alaculo del tensor depo-
E(r) =-VV(r) ==V {(P ' VM)(F)] ’ (3) larizacbn n (7). Este tensor se obtiene a partir del potencial
Para simplificar la escritura de las ecuaciones posteriorggenerado por una densidad de cargaP/[!] uniformemente
definimos distribuida en el volumen. En todos los casos donde este po-
() 1 . tencial pueda expresarse dtiahmente (caso de los elipsoi-
I(r) = = /// 77| d-r, (4 des generales), se puede taembéxpresar el campoéaitrico

generado por ese volumen cuando tiene poladreekctrica
lo que permite simplificar mucho losakculos al remitirnos ~ uUniforme.
al problema ras simple del &lculo de¢. Explicitando las

derivadas se obtiene f'”a'me”te 3. Propiedades del tensor de polarizadin

E(F) =k Z T Z 8:w Se dan a continua@n, sin demostradn, propiedades de
gue pueden deducirse de su defimig#4]:

021( F)
=k Z Z Oz 81:5 ®) » Eltensor depolarizadn es singtrico: n,s = Ngq.

= Latraza del tensor depolarizacivale 1 dentro del vo-

dondez es el versor del eje coordenadg, conzg = x, y, lumeno y 0 afuera:

z. Las componentes del campe@etrico son entonces[2]

Eo(7) = 4wk Y nag Py, donde Trn =N, () +0,,(7) +n..(7) = { 0sir ¢ o
B
Nag(7) = 1 2*1 O°(r) (6) = Cuando el volumen es un elipsoide general[5]:
CArm 00z
e Los valores de las componentes del tensor depo-

El tensor adimensional de componentgg fue original- larizacbn, que denominamos N, son constantes
mente introducido para la resolboi de problemas de mag- para todos los puntos interiores aNo sucede lo
netizacon[3] donde se lo denomirtansor demagnetizaim. mismo en los puntos exterioressadonden (7)
Su aplicabililidad a problemas tanto de polaribacéEctrica no es constante [Ec. (12)]. Los valores de N deri-
como magetica, donde caracteriza los efectos de depolari- vados de la Ec. (6) pueden expresarse&eminos
zacbn provenientes de la forma del cuerpo, justifica el uso de integrales @bticas[6].

de un nombre @s general, como el densor depolariza- L

cibn que se usa@ agu. Se introduce el factor —1#en la * De la Ec. (8) se ve que el campoeelrlco ge-

definicibn para que su traza valga la unidaédse la secon ”eTado por la polanzann es uniforme en el in-

Propiedades del tensor depolarizaéin). terior de elipsoides, pero que ,ambos vgctores no
Es més fcil calcularE (7) en notadbn matricial. Para ello son en general paralelos. Est_edmeno, bien co- :

se reescriben los vectores como matrices columnay el tensor nocido en el campo de experimentos con materia

depolarizadin como una matriz cuadrada, dando magreucamente polarizada, se denomina aniso-
tropia de forma.

E(F) N E“/’ e Eltensor depolarizadh interiorN es diagonal en
E’” ’ el sistema cartesiano de coordenadas coincidente
z

con los ejes principales del elipsoide de semiejes
Ny (T) Ty(f‘) nu(F) ai, as , az 'y ecuacdn

(x/a1)? + (y/az)? + (z/a3)? = 1.

Ny (T) nzy(r nzz(
- Py e Los terminos diagonales son entonces, como se
P=1Pr |. () demuestra en cualquier curso de taate matri-

P ces, los autovalores dé

Rev. Mex. is. E54(2) (2008) 203-207
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e Si dos semiejes del elipsoide son iguales, losde la esfera, se obtiene, de la Ec. (4),

autovalores correspondientes tietambién lo
son.

e Cuando un semieje tiendexa, el correspondien-
te autovalor deé\ tiende a 0.

4. Tensor depolarizacbn de una esfera

Se calcula a continuam el tensor depolarizam de la esfe-
ra, el cuerpo finito de dGxima simetia. Para ello se eviah el
potencialy dado por la Ec. (2). Si el radio de la esferargs
su carga total e§ y se toma el origen del sistema de coor-

denadas cartesianas en el centro de la esfera, del teorema deN (7)

Gauss de la electrdstica se obtiene[7]:

k
é—?r si r <R,
E(r) = 9)
k@
— Sl r> R.
r

El campo ekctrico es radial y de sentido saliente de la es
fera cuanday es positivo. Su rddulo E(r) es funcén lo
del mbdulor del vector posién . Como

B = ~wv() = =5 = ) 7
T
se puede integraV/ (r)/0r = —E(r) para obtener
k
—QI—R%TZ si r<R,
V=9, (10)
1—Q si r>R.
,
Teniendo en cuenta que = (47/3)R3, Q = p - v,

p = P/[l], Q@ = (47/3)R3(P/[l]), dondev es el volumen

2T
_e

(11)

Utilizando la definicon den [Ec. (6)] se obtiene final-
mente

1
Loo
1
L T =
00 1
3z2—r? 3x-y 3y-z (12)
rbd rbd rd
( v 3z-y 3y277‘2 3z-x
n = - 5 5 5
: dr ’
3y-z 3z-x 322 —r?

r5

dondeN es el tensor depolarizani interior (r < R), 1esla
matriz unidad yn el tensor depolarizagn exterior ¢ > R).
Notese que TN =1y Trn =0, como corresponde a las pro-
piedades generales enunciadas. El camgctieéto exterior a

la esfera es exactamente el de un dipolo puntual con momen-
to dipolar eéctricog = v - P.

Usando las Ecs. (8) y (12) se obtiene la expnediel
campo ebctrico generado por una esfera con polaripaci
uniforme P cuando no hay aplicado un campo externo. Para
gue la expredin resultante resulte familiar se ha remplazado
la polarizacbn ekctricaP por el momento dipolar éttrico
7=v-P = (47/3)R3P, obtenéndose finalmente

471']431 5 .
— si r<R,
3
3z2—r? 3y 3y-z
- 4m ky 7 T r
E(F) =— -p= 13
(F) v n("?‘) 3.y 3y27r2 3sm Px ) ( )
—4mk, r5 o o Dy si >R
3y-z 3z 3z2—r? D=
5 =3 5
Parar < R el campo obtenido corresponde al llamado
campo de Lorentz[8], cuyo valor se calcula usualmente me- . L ]
. Lk o . exclusivamente erétmino de vectores:
diante la expreséin integral del campo éttrico para densi-
dades superficiales de cargas de polar@madisando la rela-
cion - 4k 37 (p-7) —rip
B(i)=-"" 1n(r")-ﬁ:klw si r>R.
v T
(3x2 — 7"2)Pz +3zypy +3xzp., =3xp-7— 7'2pz (14)

y las ecuaciones afogas para cada fila del producto matri-
cial n - p, se puede reescribir la exprésidel campo exterior

Este campo corresponde exactamente al de un dipolo
puntual de momento dipolarésdtricop’situado en el origen
de coordenadas[9].

Rev. Mex. 5. E54(2) (2008) 203207
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a aqu) o usando las propiedades de sirreefrrecedentes. No
es correcto en este caso usar el potencial derivado del teore-
ma de Gauss de la electratita. Como ejemplo de la aplica-
cion de las propiedadesfsdadas, se calcula a continuati
a a el tensor depolarizagn interior de unadmina diegctrica de
extensbn indefinida y espesor finitd, donde se toma como
z el eje normal a la interfase dedtrico-va¢o. Como los se-
T miejesa Y a, tienden aco, se tiene que N, = N, = 0. Por
la regla de la traza se obtiene finalmente que

Nuz+ Nyy+ N..= 1, esdecir N.. = 1.

Z Q0
|

Z
éll

pd
N

|

>

No hay ninguna propiedad general que permita simplifi-
car de manera d@boga el @lculo del tensor depolarizami
exterior. En este caso lasicas propiedades disponibles son
A= » Nap(r) = Nga(r);

Xy = Trn=0.

Nyx=Nyy=1/2,N,=0

Q,=00

Usando estas propiedades éirero de componentes a
evaluarse se reduce a 5, dérdose déstas las cuatro res-
tantes.

6. Polarizacibn inducida

Por ser el conceptualmenteamsimple, se ha discutido has-
ta ahora 6lo el caso de polarizacionesetricas permanen-

FIGURA 1. tes, es decir, el de ferrdamdtricos o electretos. En el caso de
dielectricos normales la polarizéci es generada por el mis-

P . . mo campo dctrico aplicado. En el rango lineal se tiene en-
5. Calculo de n a partir de sus propiedades tonces

En casos de alta sim&ty o cuando alguno de los semiejes P(r) =x-E(7), (15)
tiende ao, el valor del tensor depolarizaxi interiorN pue- ~ donde, salvo en el casooisopo, la matriz susceptibilidad
de obtenerse sin necesidad de evaluar ninguna integral. Pagl&ctricax no es niiltiplo de la matriz unidad. (matriz no
ello basta utilizar algunas de las propiedades antes enuncigiagonal o diagonal con autovalores diferentes). Se considera
das, todas cumplidas por la Ec. (12): aqui solo el caso homagneo { es una matriz constante inde-
pendiente de las coordenadas) cuando se aplica un cagpo
= N es diagonal cuando el sistema de coordenadas camniforme en todo el volumen. De la primera de las Ecs. (8)
tesiano coincide con los ejes principales del elipsoidese obtiene entonces que para los puntos interiores al elipsoide
cuyos semiejes denotamos aof a, Y a.. E(#) = By 4n kN -y B,

= Latraza deN vale siempre 1. i . ) , .
ecuacbn matricial (o sistema de ecuaciones lineales) que

= Sidos semiejes del elipsoide son iguales, los autovalopuede resolverse para el campgr). Se ve que el campo
res correspondientes dietambin lo son. eléctrico interior es uniforme eny satisface la ecuatn

= Cuando el valor de un semieje tiende el corres- (1+47kN-x) - E = Ey, que invertida da
ondiente autovalor dd tiende a 0. - .
P E=1+4rk)N-x)"'-Ey, (16)

Usando estas propiedgdes se pueden calcfnﬂ:iipfente _ dondel es la matriz unidad y1 + 47k N - y)~! es la ma-
Ip; valores dé\ correspo,nfjle'ntes auna esfe'ra, un cilindro iN-4i> inversa de(1 + 47k, N - x). A partir de la Ec. (16) se
finitamente largo de sedwi circular y unadmina de espesor ptiene la expreéh completa del campodtrico de un elip-
finito y extensdn indefinida. Los resultados se ilustran en laggige diekctrico de susceptibilidag colocado en un campo

Fig. 1', 5 . o _aplicado uniforme@o. El campo ekctrico interior genera una
Es importante g&lar que cuando uno oas semiejes di- polarizacon, tambén uniforme

vergen el tensor depolarizéci interiorN sblo puede evaluar- B B .
se tomandoiimites en la integral gbtica general (no dada P=x-E=x-(1+41kiN-x)"' - Ej. a7

Rev. Mex. is. E54(2) (2008) 203-207
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Esta polarizadin genera a su vez el campo exterior alcargas dctricas. En tal caso, todas las cargas se ubican en la
elipsoide dado por Ec. (8), al que debe sumarse el aplicadsuperficie y ninguna en el interior. La polarizagique resul-

dando finalmente ta equivalente5 puede calcularse sabiendo que en el estado
. . . de equilibrio en el interior del conductor el campo resultante
E(r) = Eo — 4 kin(7) - P debe ser nulo. Es decir, el campo generado por la distribu-

cion superficial de cargas debe cancelar exactamente el cam-
po aplicado. SiE, es el campo uniforme aplicado, se tiene
entonces, por la adizn de este campo al de polarizatides-

crito por la Ec. (8)

=1 —4rkin(7) - x- (1 +47kN-x) '] Eo, (18)

donde la dependencia espacial (pero no la oriebtacuan-
do x no es nilltiplo de la matriz unidad) egtexclusivamente

determinada pon (7). E(f) = Ey — 41 k;N-P =0, que permite despejar
Es importante discutir ahora la ldiesis de polariza-
cion uniforme hecha al comienzo del trabajo. Cuando a un 47k N - P =E,. (29)
dlelgctrlco de forma arbitraria se le aplica un campo unifor- .
me Ej, la polarizaocbn inducida no séren general uniforme. Se obtieneP resolviendo este sistema de ecuaciones li-

Esto se debe a que el campo inductor en cualquieecntd  neales, que es equivalente a invertir la mahtizPara una
del material es la composam del campo aplicado y el cam- esfera meilica de radia?, dondeN = 1/3, la Ec. (19) da

po dipolarE} genejado por las restantes @amllas. Max- 5

well demostdb que E 5 sblo puede ser uniforme cuando la P=-""F, p=v-P=
superficie Imite del dieéctrico esh descrita por una expre- Amky

sion algebraica de segundo grado en las coordenad@s  dondep es el momento dipolar éctrico de la esfera. EI cam-
z[10]. La Gnica superficie cerrada de este tipo es el elipsoid@o resultante en el exterior es la compdsicilel campo apli-
general, mientras que los casasites de semiejes infinitos cado con el campo dipolar dado por la Ec. (14). Se puede
corresponden a superficies abiefta&sta es la ram por la  asimismo calcular la densidad superficial de cargaduci-

cual el caso ras simple en que un digdtrico puede tener da sobre la superficie de la esfera usando la bien conocida
polarizacdn uniforme es cuando tiene forma elipsoidal, y sufgrmula

polarizacon esh entonces dada por la Ec. (17). o(R)=R - P, (21)

—FEp, (20)

dondeR? es el versor adimensional normal y saliente de la
7. Esfera conductora en campo aplicado uni- superficie de la esfera en el punfo Si se elige el sistema
forme de coordenadas de modo qﬁecoincida conelejeybes
el angulo que formak con z, se obtiener(d ) = P-cos@ ).
La redistribucbn de cargas en conductores puede obtenef=sto muestra que, como debe sealcanza su valor aximo
se como el casdrhite en que la polarizadn de la materia positivo en (0, O,R), su maximo negativo en (0, QR) y se
puede producirse con total libertad de desplazamiento de lasula sobre el plano ecuatoriat 0.

1. La diferencia consiste en que el numerador debiera tener unida. Las condiciones para que una fubitialgebraica de segundo

des de densidad de cargd[{]® (C/m® en SI) y tiene en cambio grado describa un elipsoide generalaestietalladamente dis-

unidades de densidad de polarizaciq]-[{]* (C/m? en SI). cutidas en G.A. Korn y T.M. Kornviathematical handbook for
ii. [I] es, en notadin internacional, la designaxi de la unidad de scientists and engineefsicGraw-Hill, New York, 1968) p. 79.

longitud del sistema en uso. 6. MacMillan, The theory of the potentigDover, London 1958)

#i. Sedin el conocimiento del autor, no parece haber sido estudia-  p. 45.
do el caso en que el cuerpo&stelimitado por la intersedmn

de dos o ras superficies diferentes de segundo grado. 7. Véase, por ejemplo, Young y Freedmafigars and Ze-

i } ) mansky’s University Physics with Modern Physib@' edicion
1. Los correspondientes a otros sistemas de unidades pueden obte- (addison-Wesley, EE. UU. 2000) p. 723.
nerse de John David Jacks@iassical electrodynamigdohn ] ) ) ]
Wiley & Sons, New York 1962) p. 616. 8. Veéase, por ejemplo, A.J. Dekk&@vlid State Physio$rentice-

2. La versbn magtetica de este resultado fue publicado por pri- Hall, Englewood Cliffs, 1962) p. 42.

mera vez por el autor dEEE Trans. Magn17(1981) 1363. 9. Véase, por ejemplo, J.R. Reitz, F.J. Milford y R.W. Christy,
3. D. Landau y E.M. LifshitzElectrodynamics of continuous me- Foundations of electromagnetic theoffddison Wesley, Re-
dia (London 1941), p. 26. ading Mass., 1979) p. 39.
4. R. Moskowitz y E. Della Torre|EEE Trans. Magn2 (1966) 10. J.C. Maxwell,A treatise on Electricity and Magnetis(@over
739y referencias dldadas. Books, New York, 1954) Vol. 2, p. 66.

Rev. Mex. . E54(2) (2008) 203207
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Derivation of Analytical Expressions for the Magnetic
Torque as a Function of Experimental Parameters

GUSTAVO A. ARTECA, EDUARDO R. GAGLIANO, anp CARLOS E. SOLIVEREZ

Abstract—Simple analytical expressions are derived for the magnetic
torque on a magnetic crystal as a function of field intensity and ori-
entation. The expressions, obtained by means of a recently introduced
method of analytical continuation of series, are accurate enough in the
whole range of physical parameters. This makes it possible to use them
as universal curves for describing experimental resuits.

I. INTRODUCTION

XPERIMENTS based on measurements of magnetic

orque are an important source to determine some
physically meaningful information on magnetic crystal-
line solids. The saturation magnetization and the mag-
netic anisotropy constants are, for instance, some of the
relevant physical parameters [1], [2].

In order to obtain such constants from torque experi-
ments, it is necessary to have analytical expressions for
the torque (or other properties related to it) as a function
of the experimental variables. In our case there are two
such variables: the intensity of a static magnetic field ap-
plied on the crystal (H) and the angle between that field
and a properly chosen crystal axis (8).

Several procedures have been developed to get such an-
alytical expressions [3], [4], all of them based on repre-
senting the torque as a Fourier series in sin @ with coef-
ficients depending on H, These series involve a sort of
strong-field approximation which limits their range of ap-
plicability. In fact, it is at present not quite clear if the
expressions derived in that way can be applied in a wide
range of values of H and 6.

If one looks for a representation of the magnetic torque
as an expansion in power series of H, a new difficulty
arises owing to the lack of convergence of the series in
the strong field case. The Fourier series does not seem to
be a better alternative, because, as each Fourier coeffi-
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cient generates all powers of H, the truncation of the for-
mer cannot be compared to any truncated expansion in
powers of H [1], [3], [4].

The aim of this paper is to apply a new method of han-
dling a power series in order to get an analytic universal
curve of magnetic torque valid for both intense and low
magnetic fields. To avoid the inconveniences of the afore-
mentioned methods, we must start from new principles.
With that purpose we will take advantage of a method,
called from now on the functional method (FM) [5]-[7],
recently developed to deal with a wide class of physical
problems posed by power series. This technique has been
successful in obtaining simple approximate analytical
expressions for the function of interest, by using both a
number of its Taylor coefficients and information about
the asymptotic behavior of the function.

The paper has been organized as follows: in Section Il
we discuss the magnetic-anisotropy energy for various
crystals and obtain some analytical information about the
magnetic torque as a function of experimental parameters.
In Section III we apply the FM to derive a universal an-
alytical curve for the magnetic torque. The present ver-
sion of the FM differs from the previous one [5]-[7], be-
cause of the presence of a second variable (besides H ) in
the angle 6. Results and some experimental consequences
of our procedure are discussed at length in Section IV.

1I. MAGNETIC-ANISOTROPY ENERGY AND MAGNETIC
TORQUE

Let us briefly review the main results referring to the
magnetic torque of a crystal, in order to obtain the equa-
tions which are the object of this study. To discuss the
basic relationships, it is enough to consider at present only
a cubic crystal. Let M be the intrinsic magnetization of
the crystal; for such a system the magnetic anisotropy en-
ergy (per unit volume) is given by [1], [2]

2 2
E =K(dja; + did; + dld}) + K,dlabdl

(1)

where {a; } are the direction cosines of M, and K|, K, are
known as the magnetic-anisotropy constants. In order to
measure the magnetic torque, the crystal is allowed to ro-
tate around a given axis. In order to apply the method later
to a larger class of crystals, we will consider here a con-
venient choice of rotation axis; if we now choose the crys-
tal direction | 001 | as that axis, (1) becomes [1], [2]

(2)

.3
E =K, cos? o sin® «

0018-9464/89/0100-0678501.00 © 1989 IEEE
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where a; = cos a, a, = sin a, and a; = 0. Using (2), we
get for the magnetic torque

7 = 9E/da = (K,/2) sin 4. (3)

If we apply an external magnetic field H on the crystal,
with an angle 8 with respect to the axis | 100 |, we obtain
a total torque

T=1-3/3a(H M)
=7 -03/da {HMcos (8 - a)},
H=|H[, M=|M]| (4)

where the equilibrium condition (i.e., r, = 0) allows one
to determine 7 experimentally. Our problem is, of course,
to obtain the physically meaningful magnetic parameters
of the crystal from the measurement.

In the equilibrium condition, (4) can be rewritten as

7' =sinda = b sin (§ - a) (5)

where 7' = 7/K, and b = 2HM /K, are dimensionless
constants. In particular, M, = K;7'/2H is the normal
component of the magnetization. The parameters § and H
are known beforehand, while o, K, and M are unknown
and must be determined.

It should be stressed that (5) is general enough for our
purposes. Although only K, appears in (5), an appropriate
experimental dispositive allows one to “*uncouple” K,
from K, and to describe the former through an equation
similar to (5) [1, p. 187]. Furthermore, (5) stands also for
the third magnetic anisotropy constant in a tetragonal axis
(see details in Section IV).

In order to obtain the physical parameter characterizing
the system, it is necessary to have accurate analytical
expressions for the magnetic torque as a function of b and
6. The main purpose of this paper is the derivation of such
expressions using a new method. As we shall see, it is
designed to avoid the main drawbacks characteristic of
the procedures based on the Fourier series [1], [3], [4].

From simple trigonometric relationships, (5) can be
transformed into an algebraic equation

—64 x* + 128 x® — 16b x° sin 6 — 80 x*
+24x*sinf + (16 — b*)x* — 8b x sin §
+ b sin’ § = 0,

(6)
Let us first analyze the number and type of roots of this
equation in order to obtain analytical expressions for x in
terms of sin 6 and b.

When b = 0 we have the roots: x(®) = x(b = 0) = 0,
1/2, —=1/2, 1, and —1, whose multiplicities are 2, 2, 2,
1, and 1, respectively. Among them, x@ = 41 corre-
spond to the case where M coincides with a crystal axis
(o = +7/2). The remaining roots are at the same time
local extrema. On the other hand, when » — o we have
x'® = x(1/b = 0) = +sin 8, that is, only two real
roots. Owing to the periodic nature of the problem, the
range 7 /4 < 6 < = /2 is enough for all purposes, which

x = sin a.
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shows that the important roots are those which correlate
as

lim x = sin 6. (7)

b

limx =1

b0
Equation (7) can be easily understood: when the magnetic
field intensity is zero (b = 0), the magnetization M co-
incides with a crystal axis (other than the one taken as the
rotation axis); on the other hand, when the field intensity
tends to infinity (1/b6 = 0), the magnetization coincides
with the field direction.

One of the simplest approaches to get analytical expres-
sions for the magnetic torque would consist in obtaining
from (6) a representation of « as a power series in b or
sin 6.

This approach would result in equations valid for both
high and low field intensities, instead of expressions valid
for large or small # angles (as those deduced from the
Fourier series). The former case presents an interesting
alternative, because it would allow one to derive accurate
analytical expressions by matching high and low field in-
tensity expansions using a method of analytical contin-
uation. This approach does not seem to have been consid-
ered before, even though as we shall show, it is both
simple and advantageous.

III. ANALYTICAL EXPRESSIONS FOR THE MAGNETIC
TORQUE FROM POWER SERIES

The roots of (6) can be expanded in power series of b
and b™', about b = 0 and 1/b = 0, respectively (Taylor
and Laurent series)

x = ?ﬂx(")b" (8a)
X = gox'(")b'". (8b)

The coefficients {x™} and {x'™} can be easily calcu-
lated. In order to keep our approach as simple as possible
we will restrict ourselves only to the first few coefficients.
Introducing (8a) into (6), and equaling to zero the coef-
ficient premultiplying b” (n > 0), we can derive the coef-
ficients x" which are consistent with the condition given
by (7) for b = 0. Retaining only the terms up to the order
b*, we get

x=1-(cos® /32) ¥ + O(b%). (9a)

Proceeding in a similar way, we introduce (8b) into (6),
equal to zero the coefficients of 57" (n > 0), and use (7)
for the term corresponding ton = 0 (1 /b = 0). Retaining
the terms up to the order b2, the result is

x=sin® —4{sind — 3sin’ 9 + 2sin° 0} »~"
+ 16{18 sin’ § — 44 sin’ 9
+ (73/2) sin® 8 — (23/2) sin’ 8

+sin 0} b7 + O(b7). (9b)
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The matching of expansions (9) can be accomplished
through a recently developed method [5]-{7]. This simple
procedure has been shown successful at summing differ-
ent kinds of power series expansions with finite and even
zero convergence radii [5]-[7]. As the method takes into
account the asymptotic expansions related to the function
under study, it is appropriate to use it in this case because
the coefficients for both expansions are known.

In order to apply the above-mentioned method it is con-
venient to define the function E(A) = x — 1, where A =
1/b. We thus have the following expansions:

E(N) = E@ EM)\" (10a)
e
where ) = x'@ — [, and E™ = x'™, forn = 1, 2,
+, about A = 0, and
E(N) =\ Zﬂ Ermp-= (10b)
e
where E'" = x"*D forn =0,1,2, + -+
= 0.

The essential idea in the proposed method (FM [5]-[7])
is to introduce a mapping from the unbounded variable \
(or b) to a new bounded one w, and then to approximate
the unknown function £( \) as a sequence of polynomials
in the latter variable. The variable w and the sequence of
polynomials are determined in order to fulfill two basic
conditions: 1) the new approximation to the function must
possess the correct analytical structure predicted by both
asymptotic expansions (for large and small values of the
variable); 2) the polynomials in w must lead to the correct
Taylor expansion when rewritten as power series in \ or
A", According to the method, the knowledge of the
asymptotic expansion for A >> 1 allows one to design
the most appropriate mapping of the interval 0 < Re A\
< oo, onto 0 < Re w < 1 [5)-[7]). In our case, as in
many other cases, the interval 0 < Re A < o is the only
interval relevant for most practical applications. The fact
that the new variable is bounded suggests that the poor
convergence properties of the power series representation
of E in the original variable would be improved in the new
representation (i.e., the original divergence would be
“*smoothed’’). In fact, it can be shown rigorously that in
most cases the series in powers of w are convergent for
|w| < 1, that is, for all values of interest of the original
variable N\ {5]-[7].

We will associate to any function having the type of
asymptotic expansion characterized by (10b) the follow-
ing variable [5]-[7]:

, about 1 /XA

w=N/1+Nk), k>0 (11a)
and sequence of polynomials
E(N) = SEy = (w/\)' Sy(k, w)  (11b)
where
N
Sy (k, w) = 20 e™w" (11¢)
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with {e™} a set of k-dependent coefficients to be deter-
mined later. The method provides an important degree of
freedom in the real parameter k, which can be chosen as
shown below. Substituting (11a) into (11b) and (l1¢), it
is clear that the function SEy possesses the same asymp-
totic expansions that E( A) for both regimes of the vari-
able A. This assures us the fulfillment of condition 1)
mentioned above. In order to fulfill the second condition,
we substitute (11a) in (11b) and (11lc), then we expand
the expression in power series of A. Accordingly, we de-
termine the coefficients {e'™} in order to reproduce the
original coefficients {E'}. In case of approximating
E(\) by SEy, only the knowledge of the first N coeffi-
cients £’ will be necessary. The final result is simply

[51-[7]
oM — ;0(_1):1—5 C(=2 - i,n — )EDK (12)

where C(a,b) =a(a—~1)(a—2) - (a—-b+1)/b!
stands for the combinatorial numbers. The parameter &
can be determined as follows: if the sequence { SEy, N =
1,2, - - -} is to converge towards E( \) for all \ values
for N large enough, then for 1 /N = 0 (w — 1) the fol-
lowing condition should necessarily be satisfied (cf. (11)
and (10b)):
lim lim
N=co 1/X=0

{SN(k, w}} = ,3““ {SN(k, 1)} = g

(13)

Because the sequence { Sy (k, 1)} must converge to a k-
independent result (cf. (13)), one can expect that Sy (&,
1), as a function of &, will exhibit a plateau whose exten-
sion will increase as N increases. This behavior is quali-
tatively displayed in Fig. 1. When we compare Sy (k, 1)
with Sy.(k, 1), N' > N, we sece that in the latter case the
function (11c) shows a more extended and damped oscil-
lation about the exact result. Consequently, a reasonable
k value can be obtained if it is chosen within that plateau
[51-[7]. Owing to the fact that the stationary and inflexion
points of Sy (k, 1) as a function of k clearly define points
belonging to the plateau, they have been chosen as opti-
mum k values [5]-[7]. It is enough for our present pur-
poses to choose k as an inflexion point_ (k§’, from now
on); if there is more than one inflexion point, we will
choose the one corresponding to the point with lower ab-
solute value of the first derivative.

In the case of N = 2, we get the following very simple
and useful approximate expression for the function of in-
terest:

SEy = {k*b™'/(1 + k*b™")}’ {6k* 2E©
+ 4k* CED + k* E®} (14a)
where k* is different for each @ value, and it is given by

k* = max k§0,  (k{0)]' = (1/20E?) { ~24E)

+ [576E™M? — 720E@ E®)'?Y, (14b)
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SN(k,I) h

0

Fig. 1. Qualitative dependence of the sequences Sy (k, 1)} on the param-
eter k, for different values of N (number of Taylor coefficients).

As shown above, the coefficients E are easily deduced
from (8)-(10). By using these coefficients, (14) provide
an approximate analytic expression for the dimensionless
torque 7'

7' = sin 4{arcsin (SE, + 1)} (15)

as a function of both b and 6, whose properties we will
discuss in the next section.

Another simple expression for 7’ can be obtained if k*
is determined in order to satisfy the exact behavior when
b — 0. In this case, we simply have to choose k* so that
the following equality is satisfied:

S,(k*, 1) = E'®, (16)

As we shall see, results are greatly improved when one
takes E'® into consideration to perform the calculations.
In this case, coefficients for both asymptotic expansions
are included explicitly up to the second order, in the cor-
rect analytic framework, to reconstruct the function E(\).

It has been shown in [5]-[7] that the procedure dis-
cussed above is more advantageous when the series (10a)
is sign-oscillating. Consequently, it is expected that there
will be an optimum range of values of 6 for the application
of the present method, corresponding to that in which the
sign-oscillation is found. Using (9b) and (10a), it is clear
that £ = 0 and EV < 0 in the range of 8 values of
interest (45° < ¢ < 90°). Accordingly, to obtain the
oscillation in sign we must determine the range of 6, in
the interval above, so that E‘* = 0. From (9b) it is de-
duced that

63.92° < 0 < 90°. (17)

Thus for45° =< 6 < 63.92° one can expect poorer results
when using (14) for b — 0.

IV. ResuLts AND FURTHER COMMENTS

We have studied two types of universal curves for the
magnetic torque: 7’ versus # (at a fixed b value), and 7'
versus b (at a fixed 6 angle).

In the first case, we have chosen § = 72° (according to
(17)) in order to illustrate the quality of the results derived
from (14) and (16). Table I shows the results obtained,
compared with those deduced from the exact numerical

[+1.7]

TABLE 1
DEPENDENCEOF 7' = 7/K, 0N b = 2HM /K|, FOR § = 72°

] <

b -7 -7 -7
0.01 0.003086 0.003114 0.003086
0.1 0.030252 0.030559 0.030183
0.5 0.13909 0.14034 0.13796
1.0 0.25138 0.25331 0.24869
2.0 0.41678 0.41912 0.41265
5.0 0.66498 0.66661 0.66293
10.0 0.80439 0.80507 0.80433
100.0 0.93878 0.93878 0.93878

“Equations (14a) and (16); k* = 6.797809685.
Equation (14); k¥’ = 6.65259310.
°Numerical solution of (5) (*‘exact’” results).

solution of (5). It is clear that the results are highly im-
proved when using (16); nevertheless, both approaches
can be considered, because of their simplicity, as excel-
lent analytical approximations to 7’ in the whole range of
b values.

With regard to the universal curve 7’ versus §, we must
choose a physically meaningful value of 5. Taking into
account the following estimations for the constants [1]-

[4]:
K = 100erg - ecm™  10° < H(Oe) < 10°
0.1 <M(T)< 10

we obtain the range 10 < b < 10°. The greater the b
value, the better the results; as a consequence, we have
chosen b = 10 and b = 100 as critical examples to test
our method. Fig. 2 shows the results obtained using (14)
for 45° = 6 < 90°. For b = 100 the results are indistin-
guishable from the exact ones (circles); for & = 10 the
agreement is still excellent. Then we conclude that the
method allows one to have an analytic expression for 7’
as a function of # and b, with a precision comparable to
that of experimental results.

An expression of 7’ as a function of b, instead of H, is
more general because b is only proportional to H if M and
K, are independent of it. This happens only if H is very
large.

Let us add a word in regard to the application of the
method. Owing to the fact that 7' and b are dimensionless
it is necessary, first of all, to determine the scale of the
universal curve. This can be simply accomplished by de-
termining the maximum torque (7’ = 1) at a very intense
magnetic field, which gives K. Using this value and the
experimental result for the magnetic torque 7 at a fixed
angle @, our method makes it possible to determine the
magnetization M.

As we mentioned in Section II, the above analysis is
general enough to provide a description of the magneto-
crystalline anisotropy effects in different systems, not only
in the easy axes of magnetization of a |001| plane in a
cubic crystal. To illustrate this point, let us consider first,
for example, a group of uniaxial crystals.

For a tetragonal crystal, including only terms up to the
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Fig. 2. Dependence of the dimensionless torque 7' = 7/K, on the angle

6 for fixed values of & = 2HM /K. ------ b = 100;
®: exact results,

b= 10;

fourth order, the magnetic anisotropy energy can be writ-
ten in polar coordinates as [1]

E = K, sin® o + K, sin* « + K3 sin® a cos 4 (18)

with « the angle between the magnetization vector and the
crystal axis of the uniaxial system. Analogously, a similar
expression can be written for the energy of a uniaxial
crystal of hexagonal type [1]

E = K, sin” o + K, sin* a + K; sin® o

(19)

It is interesting to discuss how the present method can be
applied to the study of the magnetic properties of the
above systems by means of torque experiments. Our study
is devoted, as mentioned before, to the design of analyt-
ical representations of universal curves useful to the de-
termination of the anisotropy constants. In order to obtain
all of them, we need to describe the magnetization under
rotation about different axes. This can be accomplished
following a strategy that takes advantage of the expres-
sions already deduced in Sections II and III.

If a uniaxial crystal is rotated about a direction perpen-
dicular to the crystal axis, the torque per unit volume is

7= 3E/da = (K, + K>) sin 2a — (1/2) K, sin 4o
(20)

when a magnetic field H, with an angle 8 in respect to the
crystal axis, is applied. The equilibrium condition be-
comes in this case

(K, + K>) sin 2a ~ (1/2) K, sin 4a = HM sin (0 — «).
(21)

It is clear that we will have, once again, an algebraic
eighth-degree equation in x = sin « to describe the torque
above. However, even though the structure of the equa-
tion will be the same, we have in (21) two unknowns in
K, and K,. Nevertheless, the problem can be solved in a
simple way if one proceeds as follows [1]: First, a com-

+ K, sin® « cos 6¢.
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posite sample is prepared consisting of two of the above
uniaxial crystals (equal in size) with their crystal axes per-
pendicular to each other. Then, the sample is rotated about
a third axis perpendicular to both previous crystal axes.
Analyzing the magnetic torque in this condition one ob-
tains

7 = —(1/2)K, sin 4c. (22)

This result shows clearly that the anisotropy constant K,
can be obtained, exactly as earlier discussed for the case
of K,, for the cubic crystal in the | 001 | plane. After de-
termining K>, substitution of it into (21) transforms the
latter into an equation similar to the one discussed in Sec-
tion II. Furthermore, if a tetragonal crystal is studied by
rotating it about its principal axis, the torque required be-
comes

7 = —4K; sin 4o (23)

Accordingly, we notice that all anisotropy constants can
be derived in a similar fashion for a uniaxial crystal using
the same family of universal curves discussed in previous
sections. '

To study the magnetic properties of cubic crystals out
of the | 001 | plane we must rotate it about a different axis.
This will introduce the second anisotropy constant K. If
the rotation is done, for instance, about the {011 axis,
one obtains [1]

r = (K, /4 + K,/64) sin 2a + (3K,/8 + K,/16)
sin 4o — (3/64) K, sin 6. (24)

Once K, is known, the equilibrium condition applied to
(24) gives an equation containing K, as the only un-
known. In this latter case, the presence of a term such as
sin 6« gives rise to an algebraic equation of 12th degree
in sin «. The treatment is slightly more complicated in
this case, but it can be accomplished following a similar
procedure: 1) determine the correlation between the roots
in the limits H — 0 and H — oo; 2) obtain the first few
coefficients of the corresponding Taylor and Laurent
power series expansions of the roots; 3) use the FM to
continuate analytically the series and provide an expres-
sion for the new torque as a function of the field intensity
and the angle §. The formulation provided for the FM in
Section III is general enough to treat this or any other kind
of problems leading to algebraic equations such as (5).

The method explained above throws some light on a
unified approach to derive analytical expressions for
torque curves, and to provide a strategy for the determi-
nation of the anisotropy constants. A combined applica-
tion of the present procedure for different crystal planes
would be also valuable at modeling the low-field portions
of hysteresis loops. Work on this possibility is being done
at present in our group.
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ELECTROSTATIC AND MAGNETOSTATIC BEHAVIOUR
OF ELLIPSOIDAL BODIES

S

Carlos E.Soliverez

ABSTRACT

A general survey is made of the macroscopic behaviour
of ellipsoidal ferroclectric, ferromagnetic, dielectric,
paramagnetic, diamagnetic, conducting, and superconducting
bodies in uniform electrostatic and magnetostatic
applied fields. The determination of the polarisation in
saturated ferroelectric and ferromagnetic materials is
discussed. In all cases the internal and external fields,
energy, force and torque on the body are given in terms
of the applied field, of the polarisation,and of the
depolarisation tensor n which completely characterizes
the geometry of the ﬂ?oblem. The depolarisation tensor
is a function only of the ellipsoid's diameters and 1ts
principal values inside the body are the familiar demag-
netising coefficients. For all nonh}inear materials the
polarisation is an implicit function of the applied field,
of g,and of the material's properties. In the linear case
the polarisation may be expressed as a linear function of
the applied field in terms of the polarisability tensor
in a way completely analogous to the molecular casc. This
polarisability tensor is given as a simple function of the
body's tensorial susceptibility i’and of the interior
depolarisation tensor. When taking scalar susceptibilities
X= » and x=-1 (S§.I.units) the case of conductors and
superconductors are respectively obtained. The meaning of
the fictive polarisations ingroduced in these two cases 1is

discussed.
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1. INTRODUCTION

The electrostatic or magnetostatic problem of an arbitrarily
shaped body placed in a uniform applied field may in general be
solved only in an approximate way. This is a consequence of the
non-local character of the problem, where the polarisation in
any given point depends on the polarisation of the whole body.
Fortunately there is at least one situation, perhaps unique,
for which the character of the problem is purely local: the
case of ellipsoidal bodies. Here the fields and polarisations
may be written in terms of a purely geometrical entity,
the depolarisation tensor1

Ellipsoids play a distinguished role in electromagnetism

becayse they are the only known finite bodies which when
placed in homogeneous applied fields respond with uniform
polarisations and internal fields. MWe should point out here—thre
common _error of believing thatMaxwellproved *hﬂ—éllipiﬂidﬂl
~shapes to be the-enly ones—teading—to uniform polarisatien—and
dnternal—fierd—As will be seen in section 3 this problem may
be reduced to the simpler one of seeking the shapes such that

a certain integral function V (our IQ{))is a second degree

polynomial in x, y, z. Quoting Maxwell2 '...the only cases

with which we are acquainted3 in which V is a quadratic function
of the coordinates within the body are those in which the body
is bounded by a complete surface of the second degree, and the
only case in which such a body is of finite dimensions is when

it is an ellipsoid'. It seems reasonable to assume that
ellipsoidal bodies are the only finite ones to have the
quadratic property, but in our knowledge no one has ever proved
this to be so.

From the pedagogical point of view the only shapes discussed
at an elementary level are limits of ellipsoids: the semi-
infinite slab or thin disc (1 finite diameter, 2 equal and
infinite diameters) and the infinitely-long circular cylinder
(2 equal and finite diameters, 1 infinite diameter). The analysis

(;;Eg\;ggfu)is based only on continuity conditions for the fields,

leaving the third of the simple shapes, the sphere, for more



advanced treatments. The experimental determination of electric
and magnetic polarisations and of magnetlc anisotropy constants

is usually made by measuring the forces or torques acting on
spheres, discs or cylinders placed either in uniform or in
carefully controlled inhomogeneous fields4. It is of interest

in these cases to find the influence of small departures from

the perfect shape, departures that may be taken to be of ellipsocidal
nature. Conversely, fields may be measured through their action

on spheroidal {usually needle-shaped) bodies with known electric

and magnetic properties.

From the technological point of view methods such as magnetic
separation and electrostatic precipitation,and properties such
as the coercivity of magnetic tapes, to cite only a few, depend
on the particle's shape distribution, a problem that may be
tackled only in the approximation of ellipsoidal shapess.

It is therefore baffling to find the problem discussed only
in a small number of textbooks melectromagnetism, and that the
treatment given in those fewtextbooks 1lacks either
clarity or generality. In what follows an attempt is made to

fi111 this void by collecting known results that are
scattered through the literature, andd%eneralizing concepts and
treatment whenever this was feasible.

All sorts of homogeneous materials will be considered, both
isotropic and anisotropic,

The applied
field will be taken to have fixed sources, thst s to remsn unchanged
upon the introduction of the body.

For the discussion it is gonvenient to consider s€parately
three different kinds of materials:

A) ferroelectrics and ferromagnets;
B) dielectrics, diamagnets and paramagnets;
C) conductors and superconductors.

Case A corresponds to materials with a permanent polarisation
which does not depend solely on the applied field. In this case
the polarisation has to be given as data, although this does
not mean that it may be chosen at will, as it is discussed in
section 2. For a given uniform polarisation the fields

inside and outside the body are a function only of the



depolarisation tensor n. This rank-two symmetric tensor seems
to have been previously defined only at interior points1. In
the literature of magnetism this interior value N is called
(apart {from a posible 4T factor) the dcmagnetisa?ion tcnsorG,
and its principal value;:?ﬁg_dcmagnetisatign factors or
“cqeffi%fents. A sigy}? expression for the shape-anisotropy
energy’ ,which %%5%6 useful for the calculation of torques
on these materials, is given here in terms of N.

In case B the polarisation is induced by the applied flield.

In order to take into account also noﬁ:}inear effects the

case 1s considercd where the polarisation is an arbitra
ry vectorial function X of the internal : macroscopic field. It
is then found that formanisotropic ellipsoids both the polarisation
and the internal field are homogecneous, being explicitly given,
together with the external field , as functions of n, z and the
applied field. This generalizes previous results explicitly
given for the internal vectors in the isotropic and linear case,
but' only suggested for the anisotropic non-linear caseg. In the
linear case a relationship isestablished between the body's
dipolar moment and the applied field through the definition. - 1in
a way completely analogous to the molecular caseg— of a polar
isability tensof:écfghctionfg?lkgzﬁjﬁ’and the susceptibility.
The polarisability tensors previously defined for conducting
and superconducting ellipsoids10 are found to be only particular
cases of our more general one (see section 4).

Strictly speaking polarisations are either zero or meaningless
for the substances belonging to group C. Nevertheless, in this
case it is possible to define fictitious polarisations in terms
of which the problem is rendered mathematically equivalent to
casc B. It will be proved here that these fictive polarisations
give the right value of the body's dipole moment. It is also
found that the polarisability tensor for conducting bodies is ob-

tained from the polarisability tensor for dielectric bodies in the
limit of infinite jsotropic clectric susceptibility, and that
nay be estalbished
in the case of superconductors the correspondence . with perfect.
diamagnets. These rosults'may be taken as a justification, at
least from the static point of view, of the frequently drawn

analogy between those two sets of substances.



In all three cases formulas are given [or ﬁﬁﬁ;body's
energy and for the force and torque experienced the applied
- field. Instead of the cumbersome method of separation of variables
in ellipsoidal coordinates, the following much simpler algorithm
is used for solving cases B and C. First an integraf
equation 1s written for the field, equation which
contains all boundary conditions. Then a solution drawn in
analogy to case A is shown to satisfy the integral

equation.

In section 2 the case of permanently polarised materials
is discussed, serving as an introduction to the depolarisation
tensor and as a guide to the(ggﬁg?lgﬂgjmore complicated cases.
Some general properties of this tensor, as well as explicit
expressions for its  components are given in section 3. In
the two following sections cases B and C are discussed. The
problem of ellipsoidal cavities in unbounded media is discussed
in section 6, where the ambiguities of this often quoted problem
are stated. |

Some of the main advantages of the formulation are the
simplicity of the “final . expressions and the independence of
any particular choice of coordinate axes. This flexibility is
essential for the case of anisotropic materials whose principal
axes of susceptibility do not coincide with the ellipsoid's
principal axes. It should also be noticed that in the anisotropic
case it is not possible to apply the standard method of
separation of variables11.

In all cases V denotes the ellipsoid's volume. The
integrals whose limits are not specified are taken over all
space, and usually in principal value around the body's surface
in order to exclude possible field's discontinuities. In order
to render the formulas valid in all systems of units, the
previously defined12 general constants k1, kz, k3, A, €o

and u. are used.



2. PERMANENTLY POLARISED MATERIALS

In this case, which corresponds to ferroelectric and
ferromagnetic materials, the polarisation depends on the
body's history (hysteresisi&a d may be a-complicated
function of position'd&eiﬁaﬁgﬁéf%gggiﬁlﬁ“éxTgfﬁhéé“ﬁf'
domains. For these reasons the polarisation is not known
a priori and it is required its theoretical or experimental
determination.

The general theoretical problem is a formidable one
which has not yet been completely solved, the reason
for this failure being that the phenomenon of hysteresis
consists of a large number of discontinuous transitions
among metdstable states, transitions which are determined
by complex balances of energy13.

From the experimental point of view it 1s only practical
to analize the uniformly polarised case. Some authors
apparently believe that this situation may be obtained
for any body placed in a sufficiently strong applied
field, corresponding to the saturated case where all
domains have parallel polarisations. Unfortunately
-due to the boundary conditions satisfied by the field
on the body's surface this does not always happen to
be the case., A necessary condition for obtaining uniform

polarisations in strong applied fields is the homogencity
of the macroscopic field inside the body, as was
mentioned in the introduction. the only case where this
is known to be possible is for ellipsoidal bodies.

Let us(EEEg;EE?\iilggja uniformly magnetised
ferromagnetic ellipsoid in a strong homogeneaus applied

field B =u11?FAs there are no conduction currents
w0 T0p0



H{r)=H - V r),
H()=Ho~ 7o,,(x)

where the scalar magnetic potential ¢ due to the

magnetisation M is given by14

o () = 2o f M. v [—‘—-—] ar'
~ 4n ~ =" i

-r?
Vv o~ o

In what follows primed and unprimed operators act on
r' and 1 respectively. Changing from primed to unprimed
n

~

operators ,for uniform M one may write
Al

)\T

H(r)= R = M.vI(r)), (n
non ~ 4 n ~
where 3
1) = | 42 (2)
™ 1 I};'};'I

is a function which depends only on the body's shape.
Upon definition of the dimensionless depolarisatiopn

tensor n(z) with components
n

2

njk(r) SRS N I(r) , (3)
i 4 axj 39X ~
it is obtained
V(M.vI(r))= - 4mn(r).M A (4)

e ~ v o N

valid for any constant vector M. Therefore
~n
H(r) = Hy - A" n(r). M, (5)



and the magnetostatic problem is completely solved whenever
E(E) and % are known. It should be stressed that
equation (5) is expected to hold only for magnetically

saturated ellipsoidal bodies where M is uniform #ér ‘1
Favd

homogeneous applied fields.

For points inside the ellipsoid n-is a constant tensor
{see section 3), which in what folldxs will be called the
interior depolarisation tensor'ﬁ. For these interior

points the last term in equation (5),

rgdem R ﬁr' ﬁr’ (6)

is known as the demagnetising field.
At a fixed temperature the magnitude M of the equilibrium

magnetisation is usually constant independently of the
15,16

orientation respect to the crystal axes and it is

called the spontaneous magnetisation. The orientation of

M is such as to minimize the body's Helmholtz free energy
?m57’17 at gonstant applied field. Assuming the body to be
an assemblage of rigid dipoles -that is neglecting the

induced dipolar moments- and using the Lorentz' approxima-

18 % 19

tion Fm may be found to be

av ] Llo
Fm = - J m. 50 dv - 5 J %. E dv,
V' M
where
H' = H, + A M+ ara.M
~ ,,,,dem 3 o~ ~

is the dipolar contribution to the local field. The

second term in H' corresponds to the surface magnetisation
of the Lorentz gphere, and the third to the field from

the dipoles inside this spherezo. For uniformly magnetised

ellipsoids



o 1 ..
EL/V = - M.Bot 3 A" wg MUNML
MM - XAt w MIALM. (7)
6 O p e 2 O e e

The second term is the shape anisotropy energy7; the
last two give the lowest order contributions to the
magnetocrystalline anisotropy energy, the uniaxial terms21
In the saturated isothermal case we are considering, the
anisotropy energy is a function only of the orientation
of M hence the name. When considering contributions

(’b the local fieldiof hlgheﬁ_order multlpoleg one
obtains aditional terms for the crystalline anisotropy per
unit volugg Ay s which are generally wr1ttenmfrom symmetry
arguments””. A more general expression for F /V is thus
] At w  MUN.M
~onp

4
0 2 C n

F_/V M.B
m I

- A 0. (8)

If A (M) and M were known a pr10r1 one could find
the orlentatlons of M which minimize F /V as functions of
,PO and N As it happens, one has flrst to experimentally
determlne A, and M, which is done through torque expmnmeﬁfs

For a torque to be exerted on the body two conditions
should be fulfilled. First, M and B have to be non-parallel
(see equation (9)); second, the energy must depend on the
orientation of M respect to the body. Both conditions
reduce to a single one: there should be anisotropy,whether
from shape or crystalline origin. To understand the
reason for these two conditions let us consider a few
examples.

For a spherical (N=l-i) and polycrystailine or amorphous
body there is no anisg}rOPyzs and the free energy (8) is a
minimum when M and Eo are parallel. For any other qrienta

tion there is a torque on each dipole, and as M is uniform
[a')
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nd
one speaks of a torque acting on Ej&ending to align it
with the applied field. Nevertheless there is no torque on
the body because the energy does no%w%epend on the
relative orientation of’y and the body,ﬂthe magnetisation
may freely rotate respect to the latter as long as there
are no dissipative effects.

Let us now consider a non-spherical polycrystalline
body with no applied field. As discussed in section 3,
for a finite dimensions ellipsoid the principal values
oflﬂ are all positive, the smallest one corresponding to
the direction of the largest diameter. Therefore in this
case the minimum free energy is obtained when’ﬂ is directed
along the largest dimension. This effect explains the
stability of a compass' needle magnetisation. In a
similar way the crystalline anisotropy tends to alignlﬂ

dlong the: directions of minimum energy called
directions of easy magnetisation.

If an amorphous ellipsoid is placed in an applied
field the energy will be an absolute minimum when the
magnetisation is parallel both to the field and the
body's largest diameter. Therefore a torque will appear
such that tends to rotate the body towards this

direction . If the body is kept fixed the energy cannot
attain its absolute minimum and M will take the position
that minimizes equation (8) undé¥ the imposed constraints.

For these reasons, in the general case when all energy
terms are present, one may determine both A and M
through torque measurement524. Once this ismdone a
minimization of equation (8) yields M_for any given applied
field and body orientation. Then, as Yﬂ is the

ellipsoid's magnetic moment, the torque t acting on the
n

=V Mx B_. (9)

In almost uniform fields which vary little inside

the body, a force f is experienced which to a first

: : ; i 26
approximation is given by

f =YV (M.V)BO. (10)

AN » nN
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The case of homogeneously polarised ferroeclectric
ellipsoids may be analyzed in a similar fashion. The elec-
trostatic potential ¢p(r) produced at point'L by a uniform

~

electric'polarisation B is given by27

0,(x) = ! f PV [l_;lr_'lﬁ] a7 . (11)

4.{150. V ~ N

The polarisation beingestablished in the prescnce of a
uniform applied field Eo, the total eclectric {ield may be

written

E{r)

A T

Eo - v ¢ (1)

(12)

}
=1
Q

1

|

t =
B
!
—
t i

In this case

- - . A
Edep €o ﬂ'ﬁ (13)

is called the depolarisation field.

Assuming rigid electric dipoles, the Helmholtz free

energy Fp at constant applied fj,eldz8 may be found to be

. 1 A '
F /V = - P.Bo + = =— P.N.P Py, 14
p/ ~ . 2 .v.-]:]o ¥ Ap(r\:) ( )

~r Eo fa d

where A_ seems to have no specific name in the ferroelectr

- . : , 31
casezg. The electric torque =< 1530 .

t = VP x o, (15)

ne

and the force f expericnced in an almost uniform field Eo,
o~ Fard

. 31
is

f =V(P.v) Eo . (16)
n s

"
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3. PROPERTIES OF THE DEPOLARISATION TENSOR

By definition the depolarisation tensor components

njk(ﬁ) are given by

' 2
1
() T g swoaxs () (3)
j FEESY
where
3
d r?
I(r) = f R (2)
~ 0y TEE

Equation (3) may also be written as an integral over

o

the body's surface S. That is

=

19 3 1 3
PRI U G T N S
jk*,, 4n 3IX. 3% | -1 | Py,

~N o~

T - an

where use has been made of the theorem of the gradientsz,
and dSk is the surface element normal to Xy -

According to equations (3) and (2) it is seen that the
depolarisation tensor may be derived from the electrostatic
potential I(ﬁ) of a uniform charge density p = 1/1<1
distributed over volume V, or from the corresponding

33. Such a derivation offers the

gravitational potential
reat advantage of putti at r disposal the whole artiller
g . g p ‘—E_g{ffjdc()ﬁj p - _ . Yy
of potential &:eory, el gd—— 0f which wer will meske éf
intensivel use in this section.

It is well known that both the improper integral I(r)

N
and its first derivatives exist and are continuous throughout
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all space34. It may also be shown that its second derivatives
exist everywhere except on the body's surface S, and that
the order in which one takes these derivatives may be
freely interchangedSS. It then follows that the depolarisa

tion tensor is symmetric,
n_lk(,];) = n}\J(I’) (18)

The most important consequence of this property is
that for every point r there is a sct of three orthogonal
axes referred to whié; n becomes diagonalised. One should
bear in mind that this set of principal axes 1s not
necessarily the same for all points.

One of the most useful properties of n concerns the

value of its trace,

Tr {n} =7 = - — v°I(r)
~ . J] dn ~
J
1T if r e V,
el B A e B ~ (19)
an |r-x"| = 0 if r £V,
~ o~
36

v? [I_ri;—l-] = - 4x s(r-r'), | (20)

where G(r r ') is Dirac's delta distribution. Equation

(19) clearly shows that n has a discontinuity of the first
~
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kind on the surface S. It should be realized that equation
(19) is nothing but Gauss' law.

It may be proved that the interior depolarisation
tensor N is always noﬁhegative; morcover it 1s positive
definitg for bodies of\finite dimensionsﬁ. From equation
(19), outside the body

Tr {n(r)} = } nj(r) = 0,
J

where nj are the principal values (cigenvalues) of 2.
Therefore either all the eigenvalues vanish, in which
case n = 0 at that point, or the eigenvalues do not all
have Zhe same sign. It then follows that the exterior
depolarisation tensor is an indefinite tensor37

| The discontinuity of n across the surface will now.
be analyzed using theafore;entioned electrostatic

analogy. If one writes

0p(x) = -ky 0. vI(x)

1 3
S T m )
v ~ Ir_£1| ~

~
where O is an arbitrary constant vector, it follows from
equatlon (11) that g is the electrostatic
anevated 8
potential when volume V has a uniform polarisation 0

At the same time the polarisation Q is equivalent to a

surface(density charge) &6(r). Taking into account that
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replacing in the previous formula and using the theorem

of Gauss-Ostrogradsky it i1s obtained

bg(x) = - ky 0. VI(r) = Kk, [ Tﬁf%%T . (21)
S ~ o~

Therefore ¢, is also the electrostatic potential due

to a surface charge density
&(r) =s(r). 0 (22)

distributed on the boundary surface S, where i(r) is the
unit normal vector of S at the point r. The associated
A

electric field is

Eif(zz} = V¢’f(z;) = k} v (2; VI (5) )
= - 47k n(x). 0, (23)

in accordance with equation (4). From electrostatic theory39

it is known that Eg is continuous everywhere except on S
where its normal component has the discontinuity of the
first kind
+ -
s. (Ep - E = 4nk, & 24
(nﬁf ﬂ'f) L 1 » (24)

N

the upper + and - si ns referring respectively to the out-
gurdac

side and inside ofAS. From equations (22) and (23) it
follows that

+ -
s.(E. - E = 4drk, = - . 0
N (;f Nf) nky S (g n { 0

= 41k S

2
1o
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As 0 is an arbitrary vector and n is a symmetric tensor,
~ ~

it is obtained

- + - +
s. (n -n)=(m -n).s =s (25)
~ o n ~ n ~ ~

for any point on the boundary surface S. As the field's

components tangential to S are continuous across the

boundary, then
+ -

where X is any unit vector tangent to S at point r. It
(24

is then easily shown that

t.(n - n+) = (n~ -'n+).t = 0. (26)
~ ~r fatd ~ Ea'd o
As any vector A defined on S may be written as the
sum of two vectors, A_ normal to the surface and A
~ S ~T

tangential to 1it,

A=A_+A,_ =5 "(s.A) - s x (sxA),
~ ~ S L ~ ~ e Y
it follows that
= (n - n+). K (27)
~S ~ ~ ~
+ -
Aot AoAm s (28)

According to the first Maxwell equation,
v . Es(r) = 47k, p(7),
~f~ 1 ~
where p(r) is the electric charge density, zero everywhere
except on the surface S where it is a distribution.

Therefore according to equation (23)

v . (n(x).0) =0 (29)
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for every point Ir not on the boundary surface S.

Only far apart from the body it is possible to write
a general expression for n. This comes about because at
large distances the fictitious 2}01d L¢ equation (23) may
be approximated by the field oproint dipole with electric

dipole moment
R = Vg.

According to equation (12} and in this approximation it
follows that

Eg(x) = - 4nk, n(r). 0 ¥ Kk, ["‘—LL}J& - & ]
T T

fal ns 1 nt

where the origin of coordinates should be taken to be

i _ Llnds +hats
inside the body. One then ~ far away from the body
" V l“B roro
n(r) = :;,n’ ) (30)
o o dn T

where ro 1s the unit vector in the direction of r, 1 the
e . 40 ~o
unit dyadic, and ror, a dyadic operator
~ -
When the interior depolarisation tensor n is known,
+ e i : 3
n may be explicitly written from equations (25) and (26),

reading

n (r) =n (r) - s(r)s(r). (31)

Equation (31) also provides a useful approximation for near
external points.

Later on use will be made of the expression

v
(o3 (61‘))
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where 0 is an arbitrary constant vector, and the integration
N
is over all space excluding the surface S. In order to

evaluate B we first set

Taking into account that

\

and that according to equation (29)

) vl e
B e |r-r' |
~

=L L ggn,

for every point r' not on S, it follows that

SRR R (RN - Ch
lr-r'| ~ |r-r
N ~ r
Upon application of the theorem of Gauss-Ostrogradsky
separately in the two regions deteminedbyS and after

addition, it is obtained
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( v'. { Gl ] a3y = J EL;L1;$§
‘ [r-r'| £ S |r-1'|
~ ~ o~

_an?
3 le-xt |

From equation (30) it is seen that the
surface at infinity S, vanishes.

equation (25) that

1]
o
N—,

Therefore
B=V¢ﬂdV{O.J——E}'§-¥]
~ Nglr—rll
. n v
:“(OV)J i~ ~0x[vx
N N S IK."I"I ~
N

integral over the

It is then found from

| *|]’

r-r
~N o

where in the last term use has been made of a general

property of the nabla operator41 Each

term in equation
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(32) will now be analyzed separately. From the theorem of
the rotation3132 and vxvg = 0 for all g, it follows that

l};-};'l 3 |x-r*]| S -zt
fn e ([ i) e

ds
Bz-(ov)f—ds =-(0.v)§e.f—i—
o ~ |r-1"] ~ .~ lr-r|
S '~ A J S 'mar

v (0.vI(r)),
n LY

52

where use has been made of the theorem of the gradient™".
From equation (4) it is finally obtained
' 1
B =0 ( v J n(r 0 dSr']
~ |r-r"| ~
~ o
_ vf dS.(n+(r'}-n_(r'!!.0
s Lspid
= - 45 n(r).0. ' (33)
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The previously discussed properties are completely \

‘h-»-—.
general ones, valid for arbitrary shap85\ In the remalnlng

_________ w

of the sectlon the case is considered where V is the volume

inside the ellipsoidal surface
(x,/a,;) % + /a2 + (x./a =
1771 2°72 3773 ?

the afs being the ellipsoid's semi-axes. Solving the elec-

trostatlcpotentlal I(r) of a uniform charge density

p= 1/k distributed over V it is found42 43

3
I(x) = majajaq J ds (} - Z X; (s)}/R (SR, ()R, (S),

where R.(s) = (s + aj

the x.'s being the coordinates of the observation point

r. For interior points it is

L d

and for exterior points K(L) is the largest algebraic

root of the third-degree equation
() = 0. (34)

It then follows from equations (3) and (34) that



i

o ds
niy(n) = 7 agagay 85y J 2
k% k) R 2R, (IR, (IR ()

Xj DK

RjZ(K)R1(K)R2(K)R3(K) 2,

where G.k is the Kronecker's delta. Notice that for

interior points

9K

Bxk

whilst for exterior points it is obtained from equation (34)

oK
2z 2 4
= Zxk/Rk () (} X /Rm (<)) .
axk m
Upon definition of
0 if r e V ,
o~

one way write

ds

1 a0
n.,.(r) = 6., 5 a,a,a [ i
ikt 2R3 e R SIR (IR, ()R (5)
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-5 (1) a1a2a3xjka1(K)RZ(K)RS(K)RjZ(K)szm(n{l x 2R Y()). (39)

From equation (35) it is easily seen that the interior
depolarisation tensor N is constant, and when referred to
the ellipsoid's systeﬁwof principal axes it is also diagonal.
These properties do not hold for the exterior tensor, as may
be seen from instance from the dipolar character of the
fields far away from the body. It also follows that E does
not depend on the ellipsoid's volume, being a function
only of the relative values of any two semi-axes respect
to the third. Therefore two ellipsoids with semi-axes
ay;, a,, ag and ca;, ca,, ca,, where ¢ is any real positive
number, have exactly the same ﬁ (but, because of «, they
do not have the same exterior depolarisation tensor). Some
important consequences of this last property will be
discussed in section 6.

When the lengths of all semi-axes are different the
integrals in equations (35) are elliptic integrals which
for the purposes of numerical calculations are conveniently
expressed in terms of the normal incomplete elliptic
integrals of the first and second kind44. The corresponding
expressions for ﬁ have been given in the 1iterature45’46
for this general case as well as for spheroids and other
limiting cases where the integrals are expressible in

terms of elementary functions. Expressions for the exterior
3

depolarisation tensor may be derived from I[r)4 in a
similar fashion and will not be given here. %he case of the
sphere, thin disc and infinitely-long circular cylinder are
most easily solved through recourse to Gauss' theorem and
provide very illuminating examples of the formalism.

The principal values of ﬁ -the demagnetisation coefficients
N.- should not be mistaken with the ballistic or magnetometric

demagnetisation factors which are defined for non-ellipsoidal



-24 -

o as suitable averages of the there position-

bodies
dependent tensor N.

From the tabulated values it is seen that when the
principal axes are succesively numbered in order of
increasing aj's, the ordered N.'s form a decreasing sequen
ce. The smallest Nj tends to zero when the relative length
of the largest semi-axis tends to infinity and the largest
N. tends to unity when the relative length of the smallest
semi-axis tends to zero.

As B is a constant tensor (for ellipsoids) it remains
invariant under a change of coordinates which is a symmetry
operation for the body. Therefore N obeys the known

: - il 49,6
symmetry properties of rank-two tensors

Thus, if any
two axes are equivalent the corresponding Nj‘s are equal.
This, together with the trace rule equation (19) gives for

the sphere

1/3 0 0

ﬂsphere= 0 1/3 0 1.

0. 0 1/3

For an infinitely-long circular cylinder with ag= o
(or alternatively a,;=a,=0 , as% 0) it is N5= 0 and therefore

172 0 0

ﬁcylinder = g | pe

0 0 0

In a similar fashion it is found that for the thin

disc a1=az,a3=0 (or alternatively a,=a,= =, as# 0)
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0 0 0
ﬂdisc iy 0 ) L |
Lo o 1

4. INDUCED POLARISATION

This is the case of dielectric, diamagnetic and
paramagnetic materials, where the polarisation at any point
is a single-valued function of the macroscopic field at that
same point.

. : X . 27
For the dielectric case it may be written

4

: ,.f’/—i\ 1 3
E(r) = Eo + [\ ¥ ( P(r'). v |—| d°1r' , (36)
SR AT CTT I lr-rr|f o~
\ / ~ A

wherelgo is the uniform applied field and{g is the induced
electric polarisation which cannot be assumed a priori to
be uniform. Actually in this case P is homogeneous, but
we will have to prove it. N
For maximum generality E will be taken to be a vectorial

function of E,
Fa¥l

P(r) = e, X, (E(x)), (37)

and as only homogeneous bodies are considered the dependence
Of,f on r comes only through that of E. For sufficiently
~N

n
small fields the linear relationship.

P(r) = e, xo - E(T) ‘ ‘ (38)
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holds, where e is the constant50 electric susceptibility

o~
tensor. Through a simple mathematical manipulation of

equation (36) and from equation (37), it is found

X (E(r"))
A ~ME A 3
E(r) = E_ + — ¥ v - d7r! . (39)
~o 9 4w [t - '] ~
V ~ ~
This is the sought after integral = ecquation setis{ied by

E, equation which already contains all boundary condi-
tions. It is the integration over £| which gives the problem
its non-local character. LCquation (39) may be looked upon
as a set of three coupled nonhomogeneous Fredholm equations
of the second kindST, which may be solved by succesive
approximationssz. As the solution of equation (39) must be

unique it is much more simpler to take an Amsatz in analogy

to equation (12).(Therefora weltry

E(r) = B, - — n(x). Q, | (40)

where Q is for the time being a constant vector, devoid of
any ph?%ical meaning/. which should be chosen in such

a way that equation (39) is satisfied. From equations (39)
and (40) it is found

X (B - N.Q
E(r) = Ej + — v |V d r!
Fa e d n e
d v [r - r'|
~ ~
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by
hy
= + — v E - N'O .V I
Es e [ XE‘(NO e @ Q) (r)
p— - - [ - )‘ :
e 7 2(3\:) Xo (Lo . Bl (41)

where in the last step use has been made of equation (4).
Notice that the result is only valid ifl ﬁ is not a function
of position as it happens for ellipsoids; otherwise ﬁe may
not be taken outside the integral. From equations (40) and

(41) it follows that

Q= = X By - — N.Q), (42)

which when solved gives the constant vector Q to be used

in the solution equation (40). It is thus seen that the

field inside a dielectric ellipsoid placed in a uniform
applied field is uniform, and that the dependence on r of

the field outside the elllp501d comes only from n(r) .
Comparing equations (42) and (37), and taking 1nto account
equation (40), it is seen that Q is nothing but the ellipsoid's

(o4
uniform electric polarisation P. Summing up

E(r) = E. - — n(r). P, (43 a)

where

P) . (43 b)
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}cryptlc remark5~

:follows from the fo
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_electrlc dipole: mame'

2
Al
|

2

2

o :
o
R
m

T&IWS

)

Cous
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is the body's electr1c polarlsab111ty tensor. Thls symmetric

" rank-two tensor 15 deflned in. analogy to the moletular

-case9 and has been prev1ous1y discussed for conductlng
10 . . .
elllpsolds : : : -
In the general case equatlen (37) the f0110w1ng

'éxpre551qn holds for the pGLarlgatlon_?nergY.Q

w"*o

_ For the llnear case equatlon (45), equations (4?),
(15) and (16) may be wrltteﬂ54 30,31. '

; L E ;' L . S .-”.'.f. .
F. = "ﬁ_[ P{E ) dE . - J; [%7j
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Fo= -3 €4 E . o, E (48)

. EO_) Xfo . . (49)

TH
(<]

. -) . ‘ (50)

Expressions (48) and (49) have been previouély discussed
by Stratton for the isotropic casess, where the stable
equilibrium for a freely rbtating body is achieved when
the ellipsoid's largest semi-axis is parallel to the appliéd
field. For the anisotropic case the correspondingbdirectioh
is that of the maximum principal value Of;Se’ where z is
zero and‘Fp a minimum. The reader should compare the
complexity of the equations obtained by Stratton in the
body's system of principal axes with the coordinates-
independent equations given here. H o

For the diamagnetic and paramagnetic case it maylbe

written14’?c '
Al . L 3
H(r) = H,£ + — ¥ [ M(r'). v - d r' , (51)
~ A ~ 47 e AV lr_rtl' n
A4 ~
M(r) = X (H(r)) . | - | (52)
~ ™ Al ey '

In the same fashion as in the dielectric case H is
Pa'd

found to obey the integro-differential equation



-30i-

SRR £ £5¢

’i;, 1rr'|

its solution being |

HFE) =.HE*; l'ié(fj; ﬁ,:_  :%’_';1;?.':?$413

wo

where

Mo XpW, - AN M) BRNE S ¢ 5%
e

oo T

is the unlform hody ‘5 magnetlsatlon o .
It should be notlced that equatlon (55) 1s th$ correct}
starting p01nt in the moleCular fleld approxlmatlon for a j
single- domaln ferromagnet56. In the 150tr0p1c cas X :
a scalar functlon whlch ‘is:iusually taken to be -a
a constant factor- the Brlllouln function. :

‘For the linear ¢ase,whére-equatiqn'(52) m&y,b

,ié(r),,5 EER H_:?fhgﬁ$6j.;
Y Bt s U

wheve X is the constant magnetlc SuSceptlblllty t&nsor,
equatlon (55) may ba salved g1v1ng o

Mow g e thE T, e T iy
~o : S RIS T T E VT S

g Gy

p 3=
t%éﬂiﬂﬁfﬁ
S

k3
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' m is the body s magnetlc dlp@le moment ‘and g the
-symmetrlc body 5 magnetlc polarlsablllty tensor

o Bl g T VO R e B0
-prev1ou51y deflned for superconduct1ng 6111p501d510. Thé:50+;

called shape effects come abeut because S 7 Vx One may
disregard these . effects in the dlamagnetlc casé where\

At Xm ~ 10 5; but not always in the paramagnetic case -as.
,erroneously stated by some authors— where the contrlbutzon
may be 31gn1ficatlve ‘The relevant expr9551on for the'

magnetisation energy Em 1557

¥ =--u°v[ W) . S (60)
0o | T
For the linear. case E o the torque and*ihe

mf
force equations. (9) and (10) may be wr1tten57 25, 26

" & ; .
o ® e —E—;EO -ﬁW Hoos ‘,g(§1)_;
LM Gy M)kl L e
£omg W, wigy s Bo) op 0 o (83)

At constant: temperature stable equ111br1um is' achleved ﬂ
when ?m is a mlnlmum, that 15 when the bedy is orlented
with the maximum pr1nc1pal value of 4 o Parallel to He ‘
According to- equatlon (59) in the 1sctrop1c and 11near
case this corresponds to the dlrectlon of the. largest SRR
semi-axis both for the dlamagnetlc and ‘paramagnetic éase58 593
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n the oﬂwriwmd,éphérical bodies of anisotropic material wil
tend to rotate in such a way that they align with the
field theirlargest principal value of susceptibility in
the paramaghetiﬁ case, and the smallest in the diamagnetic
case. ' _ - 7

Torque measufémehts are a standard method for the
determination of pafamaghetic anisotropyéo. Equation (63)
is the foundation of the standard Faraday's method for the

determination of SUSceptibilities6].

5. CONDUCTORS AND SUPERCONDUCTORS

In accordance with the ideas to be discussed below
this is the case of what may be called perfectly
polarisable materials. L | ' .

‘Fo;:éaglectriCS'in constgnt applied fields equations
(48) and (46) show that the minimum energy (equilibrium)

state is obtained ihen % and therefore?xe’ is @ maximum.
S th '

Micrqscopically& n increase in P corresponds to an
increase of the separation between the baricenters of the
nuclear and electronic charges. If one imagines a gfadual
decrease of. the restoring forces which confine the
electrons around their nuclei, eventually the electrons
will be able to experiment macroscopic displacements.
Therefore a conductor hay be imagined as the limiting
case of a linear and isotropic -dielectric with_xe= o,

For superconductors the analogy should be drawn not
with paramagnets where the polafisation effects are due
to the preferential ‘orientation of permanent magnetic
dipoles' but with diamagnetic materials where they
originate from molecular currents induced by the external
field. Equations (61) and (59) and the negative sign of
the diamagnetic susceptibility x, show that in this case

the equilibrium state is obtained when Xp 1is a minimum.
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As the magnetic permeaﬂilityfu should always be ppsiti#eﬁz,f

L

b= e 1+ AT x> 0,

therefore

- ,_‘: '
i SR =1/t

These considerations lead oné to assimilate -at least. from
thelététic pbint'éf viéw?S— superconductors with pdffectf'
diamagnets wherei X & - T/A' ' ‘ '

The usual deflnltlon of & polarlsatlon 1nv01ves a
spatlal average of the dlpoku-moment per ‘unit volume,'
where the averaglng ‘should bo done over volumes suff1c1ent1y
large as to contain many atqms but 'small enough from
the ﬁacrdscopic.pdint of vié®64. Therefore strlctly
speak;ng ‘one may not -dcfjﬁo' polar1sat10ns 1n the
conductlng and superconductlng case. Nevertheless, From
what Eollows it w111 be seen that when the final expre551onsj
are ﬂbtalned fr0m a purely mathemat1ca1 standpoint . '
everythlng happens as if Certaln aux1llary vectors there
appearlng were actual, polar}satlons Moreover these:'
flct;tlous polarlsatlens a$ well as the rest of thﬁ
equations, would be obtained if one would consider a
con@uctor as. a dlelectrlc w%th X~ m;.and a superconductor
as a diamagnet  with x_= % 1/)2'. This prov1des the
mathematical 3ust1f1catlen of the above drawn analogy
Qnﬁaﬂdsf/ ', one. should not. use this analogy as a startlng
point but should- instead prove Lt ' ;

.Under the 1nf1uence of a unlform applxed f1e1d Eo a
surface charge den51ty cS(r] is induced on a conductlng .
ell;p501d its contrlbutlon to the electrostatlc potentlal
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being

&(r')

o b1 | SE
S . |

As iy the case 6f equation (24), one may write
1 . )
6(r) = —— s(r).(E (r) - E (r)), (64)
~ ~N v n~ nowv

4111(.1

where all symbols have the same meaning as in section 3.

Therefore, the macroscopic field E satisfies the integral

a4
equation

1

E(If;) = ’Eo = V¢1nd(,£)

1 (E'(r') - E (r')).dS
- Eo o VJ A s N ~J e (65)
o 47
S |r-r7]
o~
As for the dielectric case the Ansatz
A
E(r) = Eo - — n(r).Q (66)
~N s n € FaY A" As

is taken with Q a constant vector. Upon substitution of
la'd
equation (66) in the integrand of equation (65) it is

obtained
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i
2
=+

n

" By - = 0.0, (67)

‘where in the 1ast step use has been - made of - equatlon
{33] Therefore the fl@lgméat&t10n (66) s the sought
after solut1on The aux111ary vector Q 1s now: determlned
from the condltlon that the 1nternal electrlc {1eld

Elnt must vanlsh
~ :

Eypp = By - — N.Q = 0. (68)

For elllp501ds of flﬂlte dlmBn510ns where N is non-'

$1ngular66,'

Eo » (69
ﬁherg

(70)

is the; conductor's pqiéﬁairis;aibji-iity ;ténsoirw'..' ItlS ;s‘i;ée’ﬁjfﬁ;,
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from equation (46) that
limit o = o_. - | (71)

In order to complete the analogy between conductors énd
perfectly polarisable dielectrics it will be proved that

~

p=VvQ R . (72)

is the body's electric dipole moment. From the définitiqn.
and equations (64), (66) and (25) it follows that>®

‘ o T
p = f 1 48(r)ds = fﬁ r(e'(r) - EJQz)J-Qﬁ‘

o~

. f r Q.dS. o | (73)
From GaUss—Ostrogra&sky's,theorem

p-l= JS xj-g.a-ﬁ fv. v.(ij)d§:
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from which equation (72) is inmediately proved. The

energy, force and t0rque equations are the same as in the
dielectric case but With'the polarisability tensor equation
(70). Because from equations (66) and (68) it is 4huhl_{kdt

5 A - A A
E" =B - — n".Q= — N.Q-— n'Q
~ ~ £ A € ~ € ~
0 ¢} 0
N .
- +
= — (n -n).Q,
EON P " S

it follows from equation . (27) that h is normal to the
9111p501d's surface as it should be. '

For the superconductingrcase, according to the
Meissner effect§3_ in applied fields below a certain
critical value the internal magnetic induction must vanish;‘

= 0. | - (74)

This condition is achieved through the induction af conduc
t1on currents localized in a very narrow region neaz ' the
body's surface. Jngef51nterpsted only in macroscopie effects
these currents way  be descrlbed by a surface current
denslty 3, As the magnetlsatlon M, and therefore H,have

no phy51ca1 51gn1f1cance for supe;';conductors67 the’whole--

dlscussxon shovld be made in terms of B. The contribution
~ i



of ‘the surface ¢ ential 1597

- Relating te the d1s s of BacrossthEbOdY' 5

surface S

'ﬂf@r B ‘ﬁ; ‘ w;;._?] ;

J | , (76)-

E(‘E) . mQ" 4.” 7 x- PR
. , L3 ‘s Ir N I"l
: ’ j's o ”n

For all exterior points theifollowing Ansitz is taken




From the theorem of the gradient®’

= - WX (G x vI)




it follows that

if

T
o
%

i AV

‘Using ‘the previous result in equation (80) (equation whidh
is valid for all r) it is obtained SRS i
R AT A T

o=
|
T
=
W@
l
m

N

Bint = ; = N .(B + oAt Fﬂ,?ﬁﬁkﬂﬁlfgs:

that is

LR ob LU Ao G I L e

For exterior pdiﬂtsgqﬁﬁt&éﬁéé(ﬁﬂj anﬂ (81) giVe 

equatlon (7

1t is ea511y seen that

From equat10ns (81) and-(zgg .
_ufface as it should bew‘_{*éaa

is tangential to the bedy 5



al connectlon betweem a unlform

magnetlsation @ aﬁd]i
68

Ialent surface currenti;'s'fh

den51tv-i Therefor

'fié?g7

From equation (81) g

@

: L T
no

Whér?10-

MM 1% T S (8%)

and from equs




fleld,glnt from the flCt;thuS‘

6 (87).

0 = L -A'N.

CH(1). % H - h }L(ﬂ.or, : .(378.‘).

[

and everything-happénslas Af the Superﬁonductor ‘were a
peffe¢t‘diamaghet69. One should always remember t

~tion (87) is only a mathematical ‘{milw ‘w1th no connecfﬂ
”tlon w1th phy51ca1 reallty70. : ST . P
o - When * usmg R equa‘i:mh (87)}_‘] Should be
'con61dered be .. a bound molecular current L
. ane shod& tokp,
that 15 Vo H =0 everywherc

nS

6. CAVITIES

Textbooks dn:Electromggngtismtgustpmarily disciss !
bodies immersed  in an:

LI

the behaviour of polafisabf
1sotrop1c71 dlelectrlc oT 7 netlc medlum

Th15 Tequires the study of ‘bodies ‘with 1nter10r caV1tles

s assumed explicitly or
of. 1nf1n1te extent. Of‘

In all those d15cussxons i
1mp11c1t1y that the mgdlum
course one knows thét_all e 1 bOdlBS are . -‘finite’

. so that the cond1t10n mlght be -taken to be an
euphemlstlc way of saY1ng gﬁat the boundarles are dlstant

&
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enough so that. 1ts pgﬁlEPce;imay be safely 1gnored 71"5 |
author has never'feun& such a stateient in prlnt but"
he has often hear& iti As 4 3ust1f1cat10n the followlng
argument is ;nvoked 1p0kﬂ*f1elds fall off w1th
distance'as R‘§; where__s:,thi number of dipoles at the
boundary increasé&s as R Thexefore the contributlons to

the fleld of the medlum 8 b?indarles vanlsh 1n the 11m1t

of very large RY. A e
: That the argument 15 fallac1ous 1s e3511y seem . from .

the dlscu551ons of the: prev1ou5 sectlons For a glven'
material the 1nternal fleld is. a functlon only of N and‘f
the applled fleld As was di56ussed in ‘section 3, N s the
same for all elllp301ds with' semi-axes caj,where c is -
varlabie (51m11ar e111p501ds) In partlcular one may take‘”
the limit ¢ > «, and ‘the 1nterna1 field will" Stlll
be the same as in'the flnlte dimensions. case.

The error 1ﬂfthe ‘quoted: argument is that the fleld

of a polnt dlpole:falls off as R % but the contrlbutlon of 

a surface elementfds falls off as ¢SdS/R , where é-gsee‘3
equatlon (22)) ha's only angular dependence ‘

~ The- Cﬂmm] polnt 15 ‘that. the 1nterna1 fleld
15 shape dependent Therefore one should not speak of a.
medlum of 1nf1n1te extent w1thout speC1fy1ng 1ts shape

This may be mathmmnlcally 111ustrated for equation (25) éf“

where the 1ntegral I(r} equatlon (2) is now taken to be'
overiall. space. In thlS case I(r] is found to be
condltlonally convergent72 1ts value dependlng on the
‘way the 11m1ts are taken (shape effects )

body -of flnlte or 1nf1n1te extentvrw1th an 1nter10r-_ N
ellipsoidal cav1ty Let ¥ be- ‘the volume of the cav1ty,_=
A the volume of the b@dy when there is no cavmty and -
V= V‘wv is what remalns of ¥ .after the cav1ty has. been :
made; the correspondlng 1ntegra15 equatlon (2): w111 be
called s and I. Therefare | |
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and the depolaIISatloh tensor n(r) to be a51gned to volume‘
Vv is glven in terms of n (r) and n(r) by ' AR

As n is constant 1nslde all of 2T but no 1s constant
only inside the cav1ty, n turns out to be non- Un1f®rm !
inside V. Not nmuch else may be said about the problem 1¢ -
the present context because the appllcatlon of the .
formallsm Tequires a canstant N ‘tensor, o

"It should be mentloned here that a non- unlform
tensor. N(r) ‘precludes: the exlstence -at.- least in
'homogeneous applled flelds* of uniform polar%satunu;and ; 
internal fields. - That ‘this - 1s so0 may be seen con51der1ng; 
~ for instance the magnetlc case equation (53). If the ;
1ntar10r fleld H . were’ censtant so would be M 1n

mulnt P
accordance to eq“tlon [52) Theréfore’ X could be f‘

taken outside the integral 51gn in- equatlon (53) 1ead1ngi7
to the solution @quatlon (54) But as N(r) is not -
-constant this' last equatlon glves a non- unlform 1nter10r? 
7f1eld Hlnt’ ‘
conclusion applles to the daelectrlc case thus provzng

the thesis. ' _ _ ' ‘ ;

A final Warnihg should %e'issued When‘first introdﬁcad
to the depolarlsatlon tensor method the temptation: i's ‘ :
felt of solving the case of several e111p501da1 bodies, or
of elllp501dal bodies ‘with pav1t1es, through the use of -
the’ superp051t10n pr1nc1ple.;That the pr1nc1ple is fot
appllcable follows at once from the non- flxed charécter

Wthh ’ 15 a contradlctlon The same

H

of the polarlsatlons,:g
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