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Abstract	

A	study	is	made	of	the	behaviour	of	ellipsoidal	bodies,	with	no	free	currents	and	
charges,	under	uniform	applied	electrostatic	and	magnetostatic	fields.	The	method	
is	valid	for	all	sorts	of	solid	homogenous	isotropic	or	anisotropic	materials:	
dielectric,	ferroelectric,	diamagnetic,	paramagnetic,	ferromagnetic,	conducting,	
superconducting...	Expressions	are	given,	in	all	cases,	for	the	body's	internal	and	
external	fields,	as	well	as	for	the	free	electromagnetic	energy	and	the	torques	
derived	from	it.	Apart	from	the	body's	volume	and	the	electromagnetic	properties	
of	the	material,	these	expressions	depend	only	on	the	depolarization	tensor	n	
determined	by	the	two	aspect	ratios	of	the	ellipsoid.	Explicit	expressions	are	given	
for	n	—both	in	field	points	internal	and	external	to	the	body—	in	terms	of	
elementary	functions	except	for	the	triaxial	ellipsoid	where	they	are	Legendre’s	
elliptic	functions.	In	the	non-linear	range	the	electric	or	magnetic	polarization	is	an	
implicit	function	of	the	applied	field	and	the	anisotropy	of	the	material,	while	the	
external	field	is	an	explicit	function	of	the	polarization.	In	the	linear	range	both	the	
polarization	and	the	internal	field	are	explicit	functions	of	the	constant	internal	
value	of	n	inside	the	body	and	the	isotropic	or	anisotropic	susceptibility	tensor	χ ,	
and	the	external	field	is	an	explicit	function	of	the	polarization	and	n.	In	the	
isotropic	case	the	limit	values	χ	=	∞	and	χ	=	-1	(SI	units)	fully	describe	the	
behaviour	of	conductor	and	superconductor	ellipsoids.	A	discussion	is	made	of	
some	common	errors	in	the	treatment	of	electromagnetic	singularities	and	of	the	
behaviour	of	bodies	of	infinite	extension	and	ellipsoidal	cavities.	
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Chapter	1:	
Fundamental	concepts	

Origin	
The	topics	discussed	in	this	book	were	developed	by	the	author,	with	long	

intervals,	since	the	decade	of	1970.	The	first	ones	were	initially	presented	in	the	
theory	of	electromagnetism	course	for	students	of	physics	at	the	Balseiro	Institute	
(National	Atomic	Energy	Comission	–	National	University	of	Cuyo,	Argentina)	in	
combination	with	general	technics	for	solving	Maxwell's	differential	equations.	In	
the	decade	of	1990	a	full	revision	was	made	in	order	to	adapt	the	formulation	to	
the	level	of	a	first	course	on	electricity	and	magnetism	for	engineers	with	basic	
knowledge	of	vector	analysis	(Bariloche	Campus,	National	University	of	Comahue,	
Argentina).	Only	two	small	portions	of	this	work1,2	were	published	in	international	
scientific	magazines	with	peer	review,	because	editors	considered	the	full	text	
unsuitable	for	publication	because	of	its	length	and	pedagogical	orientation.	A	
thorough	revision	was	made	of	all	the	material	thus	gathered,	revision	that	will	
continue	as	long	as	readers	are	willing	to	make	corrections	and	suggest	
modifications,and	the	author	is	able	to	analize	and	incorporate	them.	

The	depolarization	tensor	method	provides	an	eficient	and	compact	way	of	
solving	the	case	of	ellipsoidal	bodies	polarized	by	constant	electric	and	magnetic	
fields.	It	is	thus	well	suited	for	technical	applications,	but	also	for	research	on	
anisotropic	properties	of	materials,	for	which	no	general	method	is,	to	the	
knowledge	of	the	author,	presently	available.	From	the	point	of	view	of	the	
foundations	of	electromagnetism,	it	is	one	of	the	simplest	and	clearest	example	of	
the	inextricable	relationship	between	geometric	and	physical	properties	of	
materials.	This	relationship	is	expressed	by	the	boundary	conditions	that	
determine	the	solution	of	the	diferential	equations,	but	this	is	never	so	clearly	and	
explicitly	expressed	as	by	the	depolarization	tensor.	It	is	also	a	good	illustration	of	
the	power	of	integral	methods	for	solving	electromagnetic	problems.	The	main	
contribution	of	the	author	in	this	field,	as	shown	by	the	current	literature	on	the	
subject,	is	the	generalization	of	the	use	of	this	tensor	for	all	static	electromagnetic	
problems,	the	treatment	of	anisotropic	materials	and	the	calculation	of	fields	
outside	the	body.	

History	
The	use	of	what	is	today	identified	as	depolarization	tensor	is	very	old	in	the	

analysis	of	permanently	magnetized	materials.	The	first	to	derive	it	explicity	from	
a	potential	was	probably	Maxwell3.	To	that	end	he	used	Poisson's	proof	(see	eq.	

																																																								
	

1	 Solivérez	(1981),	pp.	1363-1364.	
2	 Solivérez	(2008),	pp.	203-207.	
3	 Maxwell,	pp.	66-69.	
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2.2)	that	the	calculation	of	the	field	created	by	a	uniformly	magnetized	body	is	
mathematically	equivalent	to	taking	the	directional	derivative	of	the	gravitational	
attraction	of	an	homogenous	mass	distribution	with	the	same	shape.	The	
mathematical	analysis	of	the	subject	thus	benefits	from	the	numerous	studies	of	
gravitational	potential	(proportional	to	the	integral	f	defined	by	eq.	3.8)	made	
since	Newton's	times.	It	is	in	this	field	of	physics	that	ellipsoidal	bodies	were	and	
still	are	intensively	studied4.	

Maxwell	proved	that	ellipsoidal	bodies	are	uniformly	polarized	when	immersed	
in	a	uniform	static	applied	field	(a	constant	vector	in	the	region	occupied	by	the	
body).	He	points	out	for	integral	f	(there	called	V5)	

...	the	only	cases	with	which	we	are	acquainted	in	which	V	is	a	
quadratic	function	of	the	coordinates	within	the	body	are	those	in	which	
the	body	is	bounded	by	a	complete	surface	of	the	second	degree,	and	the	
only	cases	in	which	such	a	body	is	of	finite	dimensions	is	when	it	is	an	
ellipsoid.	

The	origin	of	this	behaviour	—which	is	analized	in	Chapter	2—	is	that	internal	
fields,	and	the	polarizations	they	produce,	are	proportional	to	second	derivatives	
of	f.	Soon	afterwards	Thomson	and	Tait	proved	ellipsoids	to	be	the	only	finite	
bodies	with	this	property6.	
The	principal	values	of	Maxwell's	entity	are	frequently	called	demagnetizing	or	

demagnetization	factors	or	coefficients,	and	the	study	of	its	history	began	as	early	
as	18967.	The	author	of	this	book	has	not	been	able	to	determine	who,	when	and	
where	rebaptized	it	as	depolarization	tensor,	a	name	that	rightly	includes	both	
electric	and	magnetic	phenomena8.	In	1941,	Stratton's	classical	text	on	
electromagnetism	introduced	the	principal	values	of	the	depolarization	tensor	
inside	dielectrics	by	solving	Laplace's	equation	in	ellipsoidal	coordinates.	He	called	
them	depolarization	factors9	but	he	neither	mentions	their	tensorial	character	
(which	Maxwell	apparently	did	not	detect),	nor	applies	them	to	conducting	or	
magnetic	materials.	Two	distinguished	russian	theoretical	physicists,	L.	Landau	
and	E.	Lifschitz,	generalized	in	1969	the	use	of	these	tensorial	coefficients	to	the	
case	of	dielectrics,	conductors	and	superconductors	in	volume	8	of	their	
monumental	Course	on	Theoretical	Physics10,	introducing	them	in	a	similar	fashion	

																																																								

	
4	 N.	R.	Libovitz,	The	mathematical	development	of	the	classical	ellipsoids,	International	Journal	of	

Engineering	Science	vol.	36,	pp.	1402-1420	(1998).	
5	 Maxwell,	p.	67.	
6	 W.	Thomson,	W	&	P.	G.	Tait,	P.	G.,	Treatise	on	Natural	Philosophy,		vol.	2,	Cambridge	University	

Press	Cambridge	(England),	2009	(new	printing	of	the	1883	edition).	P.	Dive,	Attraction	des	
ellipsoïdes	homogènes	et	réciproque	d'un	théorème	de	Newton,	Bull.	Soc.	Math.	France	vol.	59,	
pp.	128-140	(1931).	W.	Nikliborc,	Eine	Bemerkunguberdie	Volumpotentiale,	Math.	Z.	vol.	35,	
625-631	(1932).	

7	 H.	Du	Bois,	The	Magnetic	Circuit,	Longmans	(1896).	
8	 The	name	was	used	by	Van	Vleck,	chapter	IV,	in	1932.	
9	 Stratton,	pp.	206	and	213.	
10	 Landau	and	Lifchitz:	conductors	(pp.	7,	25,	28),	dielectrics	(pp.	42-45,	54),	ferromagnets	

(p.	163)	and	superconductors	(p.	170).	



Depolarization	tensor	method	 3	

as	Stratton11.	They	seem	to	be	the	first	ones	to	point	out	the	mathematical	
equivalence	of	the	behaviour	of	conductors	and	dielectrics	with	infinite	
susceptibility12.	In	1945	Stoner	gave	graphs	and	tables	of	the	demagnetizing	
factors	for	spheroids	and	general	ellipsoids,	without	mentioning	the	tensor's	
general	properties.	Almost	simultaneously,	Osborn	gave	a	number	of	useful	
formulas,	tables	and	graphs	for	obtaining	the	values	of	the	demagnetizing	
coefficients.	In	1966	Moskowitz	and	Della	Torre	analized	some	general	properties	
of	the	depolarization	tensor13.	In	1981	this	author	proved,	for	the	magnetic	case,	
that	this	tensor	also	solves	the	anisotropic	case	and	provides	the	non-uniform	
value	of	the	induced	field	outside	the	body14.	In	2006	alternative	methods	were	
proposed	for	the	calculation	of	the	tensor15.	In	2008	this	author	discussed	the	
aplication	to	the	electric	case,	including	electrets	and	conductors16.	

Applications	
Elementary	texts	on	electricity	and	magnetism	solve	only	the	behaviour	of	the	

following	fictive	bodies	(the	equivalent	ellipsoids	are	identified	between	
parenthesis):	

• point	charge	(ellipsoid	with	3	equal	and	very	small	semi-axes);	
• sheet	of	uniform	thickness	and	infinite	extension	(ellipsoid	with	1	finite	semi-
axis	and	2	very	large	semi-axes);	

• cylinder	of	circular	cross-section	and	infinite	length	(ellipsoid	with	2	equal	
semi-axes	and	1	very	large	semi-axis);	

• volume	of	infinite	extension	(ill	defined	problem	discussed	in	Chapter	5).	

The	sphere	—the	finite	body	of	highest	simmetry—	is	solved	only	in	advanced	
courses	of	electromagnetism	by	reducing	Laplace's	equation	to	a	set	of	ordinary	
differential	equations	with	the	canonical	method	of	separation	of	variables	in	
spherical	coordinates17.	Solving	triaxial	ellipsoids	(three	different	semi-axes)	with	
the	same	method	requires	advanced	knowledge	of	metric	properties	and	the	use	of	
an	uncommon	and	complex	sistem	of	curvilinear	coordinates18.	
On	the	other	hand,	the	depolarization	tensor	method	requires	only	a	basic	

knowledge	of	vector	analysis	in	order	to	solve	the	whole	family	of	ellipsoids,	
including	the	sphere,	sheets	of	infinite	extension,	circular	and	elliptic	cylinders	of	
infinite	length.	The	internal	fields	may	thus	be	expressed	in	terms	of	constant	
matrices	peculiar	of	each	body,	whose	geometric	part	is	a	function	of	two	
parameters		which	are	the	ratios	of	two	semiaxes	to	the	third	(aspect	ratios).	

																																																								

	
11	 Landau	and	Lifchitz,	p.	20.	
12	 Landau	and	Lifchitz,	p.	40.	
13	 Moskowitz	and	Della	Torre,	pp.	739-744.	
14	 Solivérez	(1981).	
15	 M.	Beleggia,	M.	De	Graef	and	Y.	Millev,	Demagnetization	factors	of	the	general	ellipsoid:	An	

alternative	to	the	Maxwell	approach,	Philosophical	Magazine	vol.	86,	pp.	2451-2466,	2006.	
16	 Solivérez	(2008).	
17	 Jackson,	pp.	156-160;	Reitz,	pp.	93-94;	Stratton,	pp.	205-207.	
18	 Landau	and	Lifchitz,	pp.	20-27;	Stratton	pp.	58-59,	211-213,	257-258.	
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Only	limited	to	the	homogeneous	case,	the	method	is	valid	for	any	of	the	
following	types	of	materials:	

• isotropic	ones,	like	amorphous	and	policrystalline	solids;	
• anisotropic	ones,	like	single	crystals;	
• permanent	and	induced	electric	(electrets,	ferroelectrics...)	and	magnetic	
(ferromagnets,	antiferromagnets...)	polarizations;	

• conductors	(metals)	and	insulators	(dielectrics);	
• 	superconductors.	
The	method	allows	to	easily	solve	a	large	range	of	practical	problems	for	

realistic	finite	bodies	by	using	mostly	elementary	mathematical	function	and	a	
basic	knowledge	of	vector	analysis.	The	exception	are	triaxial	ellipsoids	which	—	
due	to	the	appearance	of	elliptic	functions—	require	the	use	of	tables	or	software	
like	Mathematica®	or	Maple®.	
Experimental	determination	of	polarizations19	and	of	electric	and	magnetic	

anisotropy	constants	are	usually	made	by	measuring	forces	and	torques	on	
spheres,	disks	and	cylinders	placed	in	known	uniform	applied	fields	or	appropiate	
non-uniform	ones20.	Inversely,	these	forces	and	torques	provide	the	value	of	the	
field	in	which	the	bodies	are	immersed.	Ellipsoids	include	or	are	good	
approximations	to	those	bodies21,	also	allowing	an	estimation	of	the	errors	caused	
by	departures	from	ideal	shapes.	They	are	also	used	in	single	crystals	for	the	
calculation	of	lattice	sums	22,	the	microscopic	contributions	of	atomic	and	
molecular	electric	charges	and	dipole	moments	to	the	macroscopic	field.	There	are	
numerous	technological	methods	and	properties	—like	magnetic	resonance23,	
electrostatic	precipitation,	magnetic	coercivity	of	tapes	and	disks24—	that	can	be	
more	easily	interpreted	when	using	ellipsoidal	bodies.	Also,	some	experiments	
suggest	that	in	certain	cases	ellipsoidal	particles	may	appear	spontaneously25.	
Widely	used	anisotropic	materials,	seldom	discussed	in	technical	textbooks26	
because	of	the	difficulties	of	its	mathematical	treatment27,	may	be	easily	discussed	
with	the	depolarization	tensor	method.	
It	is,	therefore,	surprising	that	the	electromagnetic	behaviour	of	ellipsoidal	

bodies	is	absent	from	most	textbooks	on	electricity	and	magnetism,	being	confined	

																																																								

	
19	 In	line	with	the	use	of	the	denomination	depolarization	tensor,	a	magnetization	will	be	called	

magnetic	polarization	in	this	book.	Therefore,	the	term	polarization	refers	both	to	the	electric	
and	magnetic	one.	

20	 H.	Zijlstra,	Experimental	Methods	in	magnetism,	vol.	2,	North	Holland	Publishing	Co.,	Amsterdam	
(1967).	

21	 M.	Beleggia	et	al.,	J.	Phys.	D:	Appl.	Phys.	39,	pp.	891-899	(2006).	
22	 M.	Widom,	Shape-Adapted	Ewald	Summation.	
23	 J.	H.	Duyn	and	T.	H.	Barbara,	Magn.	Reson.	Med.,	72(1),	pp.	1-3	(2014).	
24	 Q.	F.	Brown	Jr.	and	A.	H.	Morrish,	Phys.	Rev.	vol.	105,	p.	1198	(1957).	
25	 G.	R.	Davies,	The	mechanisms	of	piezoelectricity	and	pyroelectricity	in	poly(vinylidene	fluoride),	

The	Dielectric	Society	1984	Meeting,	Abstracts	of	Invited	Papers.	
26	 A	notable	exception	is	the	book	by	Landau	and	Lifchitz.	
27	 See,	for	instance,	the	Report	of	the	Coulomb's	Law	Committee	of	the	American	Association	of	

Physics	Teachers,	Am.	J.	Phys.	vol.	18,	p.	1	(1950).	
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to	theoretical	treatises	and	articles	in	specialized	journals.	This	books	intends	to	
fill	this	gap,	collecting	scattered	formulas	and	properties,	generalizing	the	formulas	
and	adding	new	ones	whenever	possible.	

Requirements	
The	reader	is	required	to	be	familiar	with	the	differential	and	integral	physical	

laws	relating	electric	and	magnetic	fields	and	potentials	with	their	sources:	electric	
charge	density	and	polarization,	current	density	and	magnetization.	The	required	
knowledge	of	mathematics	includes	operations	with	matrices,	derivatives,	surface	
and	volume	integrals,	the	combined	application	of	vectorial	operators	and	their	
integral	theorems.	As	previously	mentioned,	it	is	not	necessary	to	solve	Laplace's	
equation,	an	unavoidable	requisite	unless	the	depolarization	tensor	method	is	
used.	

Limitations	of	the	method	
The	depolarization	tensor	method	is	valid	only	when:	

• The	applied	field	is	uniform	over	the	whole	body,	but	not	necessarily	elsewhere.	
In	the	magnetic	case	the	condition	can	be	easily	obtained	with	Helmholtz	coils28.	

• The	body's	material	must	have	a	stable	ellipsoidal	shape	—which	rules	out	
liquids)—	and	uniform	electric	or	magnetic	properties	in	a	macroscopic	scale.	
Otherwise,	the	material	may	be	isotropic	(amorphous	or	micro-policrystalline)	
or	anisotropic	(single	crystal	or	textured	policrystalline29).	
The	applied	field	does	not	need	to	be	fixed	(unmodifiable	by	the	introduction	of	

the	body),	except	for	simplicity	in	the	calculation	of	the	energy	and	the	resulting	
forces	and	torques.	The	method	is	valid	for	torque	experiments	whenever	the	
value	of	the	applied	field	can	be	measured	or	calculated	after	the	introduction	of	
the	ellipsoidal	body.	

Dealing	with	singularities	
	Electromagnetic	phenomena	are	fully	described	by	Maxwell's	equations	and	the	

auxiliar	constitutive	equations	which	describe	material	properties.	The	standard	
formulation	makes	use	of	vector	analysis	and	techniques	of	resolution	of	partial	
differential	equations,	but	not	of	integro-differential	equations	like	those	given	by	
eqs.	2.31.	The	depolarization	tensor	formulation	dispenses	with	the	use	of	
differential	equations,	but	makes	intensive	use	of	vector	analysis	and	of	integral	
relationships	like	the	divergence	theorem,	where	special	precautions	must	be	
taken	when	dealing	with	singularities	like	point	charges	and	jump	discontinuities	
across	the	body's	surface:		

																																																								

	
28	 W.	Franzen,	Generation	of	Uniform	Magnetic	Fields	by	Means	of	Air-Core	Coils,	Rev.	Sci.	Instr.	vol.	

33,	pp.	933-938	(1962).	
29	 A	policrystalline	material	is	textured	when	its	microcrystals	have	predominance	of	certain	type	

of	faces.	This	often	happens	in	laminated	metallic	materiales,	because	the	lamination	process	
favours	the	appearence	of	certain	crystal	planes	and	disfavours	others.	
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point	charge	type	singularity:	 	 (1.1)	

jump	discontinuity:	

F(r + )≠


F(r − ) through)surface)S. 	 (1.2)	

These	singularities	appear	repeatedly	in	surface	and	volume	integrals,	both	for	
the	electric	and	magnetic	case.	As	they	arise	from	a	simplified	mathematical	
representation	of	physical	facts,	to	solve	them	is	necessary	to	trace	them	back	to	
the	basic	physical	phenomena	they	describe.	This	physical	analysis	is	made	in	the	
two	following	sections,	while	in	Appendix	3	the	integral	theorems	of	vector	
analysis	are	carefully	reformulated	in	order	to	deal	correctly	with	these	
singularities,	where	it	may	not	be	valid,	for	instance,	to	interchange	the	order	of	
derivation	and	integration.	
Scalar	and	vectorial	magnitudes	with	constant	values	within	a	bounded	region	

play	an	essential	role	in	the	method.	Electric	and	magnetic	polarization,	for	
instance,	have	a	finite	and	constant	value	inside	and	vanish	outside	the	ellipsoidal	
volume	V.	Applied	electric	and	magnetic	fields	are	constant	only	in	region	that	
barely	exceeds	V,	and	may	vary	widely	in	the	outside.	The	jump	discontinuities	of	
polarization	through	the	body's	surface	are	the	sources	of	the	internal	and	external	
induced	field.	The	invariability	of	applied	fields	in	V	play	a	crucial	role	in	the	
determination	of	the	forces	and	torques	exerted	on	the	ellipsoidal	body	(see	
Chapter	5)	

It	is	therefore	convenient	to	have	a	common	denomination	for	these	kind	of	
fields,	in	order	to	clearly	differentiate	them	from	the	constant	vectors	of	
mathematics	that	are	invariable	over	all	space.	For	that	reason,	in	this	book	a	
vector	is	said	to	be	uniform	in	a	region	V	when	it	is	constant	in	V	(invariable	
magnitude,	direction	and	sense),	but	not	necessarily	outside.	

Point	charge	type	singularity	
The	origin	of	the	point	charge	type	singularity	is	the	experimental	Coulomb's	

law	(the	value	of	constant	k1	in	different	systems	of	units	is	discussed	in	Appendix	
1),	

	 	 (1.3)	

which	gives	the	force	experienced	by	a	charge	q	in	presence	of	a	charge	q'.	The	
experiment	requires	two	different	charges:	the	field's	source	q'	and	the	charge	q	
where	the	force	is	applied	(unless	one	is	willing	to	invoke	a	"Münchausen	
effect"30).	It	is	therefore	necessary	to	differentiate	between	the	field	point	 	

!r 	and	
the	source	point	 		!r ' 	This	requirement	is	ignored	in	the	macroscopic	formulation	of	
electromagnetism	because	otherwise	fields	would	not	be	defined	inside	
continuous	charge	distributions.	The	price	one	has	to	pay	for	this	simplification	is	
that	the	resulting	macroscopic	field	differs	from	the	microscopic	field	actually	
experienced	by	atoms	and	molecules.	

																																																								

	
30	 The	mythical	Münchhausen	baron	raised	himsel	by	pulling	from	his	boot's	straps.	

 !!1/
r− r ' cuando r→ r ',

 !!


F(r )= k1qq'

r− r '
r− r ' 3

= q

E(r ),
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Coulomb's	law	gives	origin	to	the	definition	of	the	differential	electric	field	

 !!d

E(r ) 	created	at		 !r 	by	an	infinitesimal	charge	 !!dq= ρ(r ')d3r ' 	at	 !!r '. 	This	field	is	
expresssed	in	terms	of	the	volume	charge	density	ρ 	by	

	 	 (1.4)	

where	field	and	source	points	are	explicit,	as	will	be	always	done	in	all	integrals	
herein.	

The	total	electric	field	created	by	the	complete	charge	distribution	ρ	is	thus	
given	by	

	 	 (1.5)	

Expressions	1.3	and	1.5	do	look	similar,	but	they	differ	in	a	fundamental	way.	
While	for	Coulomb's	law	it	is	not	valid	to	take	 		

!r = !r ', 	the	electric	field	expression	
requires	its	validity	for	all	volume	and	surface	integrals.	There	are	additional	
problems	because	the	volume	charge	density	ρ	for	point	charges	is	not	a	well	
behaved	function,	and	the	same	happens	with	surface	charge	densities.	These	
singular	densities	may	be	given	mathematical	rigour	by	the	use	of	distribution	
theory,	a	method	that	will	not	be	used	here	for	the	evaluation	of	integrals	of	this	
kind	because	most	engineers	are	not	familiar	with	it.	Instead,	appropiate	care	will	
be	taken	for	the	evaluation	of	singular	integrands	with	standard	methods,	an	
example	of	which	is	the	calculation	of	the	trace	of	the	depolarization	tensor	in	eqs.	
3.15	and	A3.7.	
The	simplest	case	of	dealing	with	point	charge	type	singularities	is	that	of	eq.	

1.5.	One	may	take	a	system	of	spherical	coordinates	with	origin	at	point	 	
!r 	so	that	

the	integral	becomes	

	
 		
!
E(!r )= −k1 dϕ senθdθ R̂

R2
ρ(ϕ ,θ ,R)R2dR

0

R(ϕ ;θ )

∫∫
0

2π

∫ con !
R = !r '− !r . 	 (1.6)	

The	singularity	turns	out	to	be	integrable	because	of	the	factor	R2	in	the	differential	
volume	element.	As	will	be	discussed	later	on,	this	does	not	mean	that	such	
singularities	do	not	affect	the	validity	of	the	standard	divergence	and	curl	
theorems	of	vector	calculus.	

Let's	examine	the	first	of	these	theorems.	Coulomb's	Law	eq.	1.3	is	the	origin	of	
Gauss’s	Law	
	

 		
!
E(!r )id!S

S
"∫∫ = 4πk1QS , 	 (1.7)	

where	QS	is	the	charge	inside	the	closed	surface	S.	According	to	the	divergence	
theorem	eq.	A3.8,	

	
 		
!
E(!r )id!S

S
"∫∫ = ∇ i

!
E(!r )d3r

V
∫∫∫ = 4πk1QS = 4πk1 ρdV

V
∫∫∫ , 	 (1.8)	

 !!
d

E(r )= k1

r− r '
r− r ' 3

dq'= k1
r− r '
r− r ' 3

ρ(r ')d3r ',

 !!


E(r )= k1

r− r '
r− r ' 3

ρ(r ')d3r '
V
∫∫∫ .
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where	V	is	the	region	bounded	by	S.	The	result	is	one	of	Maxwell's	equations	(see	
eq.	A1.3)	

	 		 ∇ i
!
D(!r )= ε0∇ i

!
E(!r )= 4πk1ε0ρ , so	that ∇ i

!
E(!r )= 4πk1ρ. 	 (1.9)	

The	volume	charge	density	ρ	of	a	point	charge	eq.	1.3	would	then	be	

	

 		

ρ = 1
4πk1

∇ i
!
E(!r )= q'

4π ∇ i
!r − !r '
!r − !r '3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= q'
4π

1
!r − !r ' 3

∇ i(!r − !r ')+∇ 1
!r − !r ' 3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
i(!r − !r ')

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= q'
4π

3
!r − !r ' 3

− 3(
!r − !r ')i(!r − !r ')
!r − !r ' 5

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=0,

	 (1.10)	

where	use	has	been	made	of	eq.	A2.5.	
The	experimental	validity	of	Gauss's	Law	has	been	thoroughly	verified31,	so	it	

follows	that	eq.	1.9	does	not	hold.	Some	authors	try	to	"solve"	the	problem	by	
denying	the	validity	of	eq.	1.10	with	dubious	mathematical	arguments32,	but	the	
origin	of	the	paradox	is	that	the	divergence	theorem	eq.	A3.8	is	not	valid	for	
singular	fields	like	the	one	given	by	eq.	1.3.	
A	similar	problem	arises	with	the	calculation	of	the	following	expression,	that	

will	be	used	later	on	for	the	calculation	of	the	depolarization	tensor	trace:	

	
 		
∇ i∇ d3r '

!r− !r 'V
∫∫∫ . 	 (1.11)	

This	expression	is	well	known	in	physics,	where	it	is	usually	solved	by	using	
Dirac's	delta	function,	that	is,	invoking	distribution	theory.	Some	authors	of	texts	in	
electromagnetism	justify	its	value	by	juggling	with	the	order	of	derivation	and	
integration,	frequently	making	invalid	manipulations.	The	topic	is	discussed	in	
Appendix	3	in	order	to	make	a	valid	derivation	of	eq.	A3.7	with	no	recourse	to	
Dirac's	delta	function.	
One	may	deal	with	singular	fields	in	two	different	ways.	The	first	one,	which	

preserves	Maxwell's	equations	even	for	singular	charge	distributions,	is	to	extend	
the	definition	of	charge	(and	current)	densities	in	order	to	include	point	charges,	
surface	and	line	charge	distributions	(and	the	corresponding	current	
distributions).	This	requires	distribution	theory,	a	complex	mathematical	
																																																								

	
31	 See,	for	instance,	Young	and	Freedman,	p.	721.	
32	 Reitz,	p.	45,	ignores	the	basic	rule	of	making	all	possible	simplifications	before	taking	limits,	not	

afterwards.	
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formalism33	well	known	to	physicists	but	seldom	used	by	engineers.	The	other	way	
—discussed	in	Appendix	3—	is	to	extend	the	validity	of	the	integral	theorems	of	
vector	analysis	for	the	case	of	singular	charge	distributions	like	point	charges.	The	
latter	approach	is	used	by	some	texts	on	electromagnetism,	but	usually	not	
explicity	stated	as	a	generalization	of	the	standard	theorems.	

Step	discontinuities	
Step	discontinuities	present	similar	difficulties.	In	a	well	known	text	on	

electromagnetism	which	the	author	used	for	his	first	studies	of	the	subject,	the	
following	integration	by	parts	is	made34	(here	rewriten	in	our	notation):	

	

 		

∇Φ(!r )i !D(!r )− !D0(!r )( )d3r
V '
∫∫∫

= ∇ i Φ
!
D−
!
D0( )( )d3r

V '
∫∫∫ − Φ(!r )∇ i

!
D(!r )− !D0(!r )( )d3r

V '
∫∫∫ ,

	 (1.12)	

where	 Φ	is	an	electric	potential,	 		
!
D, !D0 	are	the	displacement	vectors	in	the	

presence	and	absence	of	the	material	body,	and	use	has	been	made	of	eq.	A2.5.	The	
integration	volume	V	'	includes	both	the	dielectric	body	and	the	sources	of	 Φ.	From	
divergence	theorem	eq.	A3.8,	Jackson	argues	that,	as	the	integration	surface	S'	is	
outside	the	body,	it	follows	that	there	 !!


D=

D0 	and	

	
 		

∇ i Φ
!
D−
!
D0( )( )d3r

V '
∫∫∫ = Φ

!
D−
!
D0( )d2!r =0,

S '
"∫∫ 	 (1.13)	

where	 !!d2r 	is	the	differential	element	of	area	vector	normal	to	the	surface.	
The	standard	divergence	theorem	may	be	used	when	the	the	first	partial	

derivatives	of	the	integrand	are	continuous	in	V'35,	but	 !!

D−

D0 	has	a	step	

discontinuity	across	the	body's	surface	S.	One	may	avoid	the	problem	by	dividing	
the	volume	of	integration	in	two	by	the	surface	S	of	step	discontinuities,	the	
method	used	in	the	formulation	of	the	generalized	divergence	theorem	eq.	A3.18.	
Using	this	theorem	eq.	(1.12)	gives	

	
 		

∇ i Φ
!
D−
!
D0( )( )d3r

V '
∫∫∫ = Φ

!
D−
!
D0( )d2!r

S '
"∫∫ − Φ

!
D+ −

!
D−( )d2!r

S
"∫∫ ≠0, 	 (1.14)	

because	the	last	integrand	does	not	vanish.	
This	sort	of	problems,	which	appear	frequently	in	texts	on	electromagnetism,	

usually	remain	undetected	because	such	complex	integrals	are	seldom	computed	
for	real	distributions	of	matter.	This	was	not	our	case	because	it	was	quite	easy	to	

																																																								
	

33	 For	a	simplified	formulation	based	on	L.	Schwartz,	Theorie	des	distributions	(Hermann,	Paris,	
1950)	see	R.	J.	Gagnon,	Am.	J.	Phys.	vol.	38,	pp.	879-891	(1979).	

34	 Jackson,	p.	125.	
35	 Korn	and	Korn,	p.	163.	
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use	the	depolarization	tensor	method	to	compare	the	initial	expression	for	an	
ellipsoidal	body	with	the	final	one,	finding	no	match.	

Physical	units	and	mathematical	notation	
Texts	used	by	physicists	—like	Jackson's—	tend	to	use	the	Gauss	system	of	units	

because	it's	more	suited	for	relativistic	analysis,	while	engineers	uniformly	use	
standard	SI	units.	Instead	of	committing	ourselves	to	one	of	the	two,	we	use	the	
general	system	introduced	by	Jackson	through	constants	k1,	k2,	k3,	λ	and	λ'	defined	
and	tabulated	in	Appendix	1	for	all	commonly	used	systems	of	units36.	

The	mathematical	notation	used	in	this	book	uses	the	following	conventions:	

• Vectors	(fields,	polarizations...)	and	tensors	(depolarization,	susceptibilies...)	are	
represented	in	two	alternative	ways:	

1.	 As	linear	combinations	of	products	of	components	and	unit	vectors	such	as	

 !!

E(r )= Ez(

r )ẑ. 	Variables	are	always	written	with	italics,	vectors	are	always	
crowned	with	arrows	and	unit	vectors	with	^.	The	omission	of	the	arrow	
indicates	the	vector	module,	

 !!

E = E. 	Second	rank	tensors	are	represented	with	

italics	and	bold	letters,	and	its	components	are	given	in	dyadic	notation37	(see	
Appendix	6)	

	
 			
n(!r )= nαβ(

!r )x̂α x̂β
β
∑

α
∑ , 	 (1.15)	

thus	making	clear	that	its	scalar	product	with	a	vector	gives	another	vector.	This	
intuitive	and	compact	notation	simplifies	the	derivation	of	equations,	but	not	its	
resolution.	For	the	latter	it	is	more	conveniento	to	use	the	following	alternative	
notation.	

2.	Vectors	are	alternatively	represented	as	column	or	row	matrices	of	dimensión	
1	x3	or	3x1.	Second	rank	tensors	are	then	represented	as	square	3	x3	matrices,	
as	in	eq.	3.66.	The	only	disadvantage	of	this	representation	is	that	depends	on	
the	chosen	coordinate	system,	but	so	does	the	diagonal	form	(see	below)	of	the	
depolarization	tensor.	

• V	denotes	both	the	region	occupied	by	the	ellipsoidal	body	(in	integrals)	and	the	
magnitude	of	its	volume	(in	equations),	concepts	easily	discriminated	from	the	
context.	

• S	is	the	boundary	surface	of	region	V	(the	body)	and	 !!ŝ(
r S ) 	the	outgoing	unit	

vector	normal	to	S	at	point	 !
r S .	

• x,	y,	z	are	orthogonal	cartesian	coordinates.	
• Different	coordinates	are	generically	called	xα	,	where	α	=	x,	y,	z	and	xx	=	x,	xy	=	y,	
xz	=	z.		

																																																								

	
36	 Jackson,	pp.	613-618.	
37	 Morse	and	Feshbach,	pp.	54-92.	
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• Unless	explicitly	stated	otherwise,	the	cartesian	coordinate	system	in	use	is	the	
one	that	diagonalizes	the	matrix	representation	of	the	depolarization	tensor,	the	
ellipsoidal's	body	principal	system	of	eq.	A7.2.	

• δαβ 	is	Kronecker's	delta	function	(or	matrix)	defined	by	
!
δαβ =

1if α=β
0if α ≠ β
⎧
⎨
⎩

. 	

Therefore,	the	unit	vectors	corresponding	to	each	of	the	orthogonal	coordinate	
axis	fulfill	the	condition	 .	

• Symbol	 is	the	gradient	operator	nabla	such	that	its	

application	to	a	scalar	function	gives	a	vector.	The	divergence	operator	is	
written	as	∇·,	the	curl	as	∇x	and	the	laplacian	as	∇·∇	or	 Δ.	

• 	is	a	source	point	for	the	field	(electric	charges,	polarization,	electric	
current...),	which	is	always	explicity	distinguished	from	the	field	point	where	the	
generated	field	acts	upon.	

• d2r'	is	the	scalar	differential	element	of	area	in	a	surface	integral.	
• 	is	the	vectorial	differential	element	of	area	in	a	surface	integral.	
• d3r'	is	the	scalar	diferential	element	of	volume	in	a	volume	integral.	

Organization	of	the	book	
Three	categories	of	materials	have	very	similar	behaviour	both	in	the	electric	

and	magnetic	case:	spontaneously	polarized	ones	(like	electrets,	ferroelectrics	and	
ferromagnets);	those	polarized	only	in	the	presence	of	fields	(like	dielectrics,	
diamagnets	and	paramagnets);	those	with	vanishing	internal	fields	(conductors	
and	superconductors).	In	order	to	facilitate	comparisons,	in	Chapter	2	these	cases	
are	separately	discussed	for	electric	and	magnetic	substances.	
In	permanently	polarized	materials	a	uniform	applied	field	is	necessary	only	for	

maintaining	and	orienting	the	uniform	polarization.	The	body's	internal	and	
external	fields	are	then	fully	characterized	by	the	depolarization	tensor	n,	both	
with	or	without	applied	fields.	

For	substances	that	get	polarized	only	in	the	presence	of	applied	fields,	the	
linear	approximacion	is	valid	except	in	unusually	high	fields.	In	this	approximation	
the	induced	polarization	is	proportional	to	the	uniform	applied	field	through	a	
susceptibility	that	is	a	scalar	in	the	isotropic	case	and	a	second	rank	tensor	χ 	in	the	
anisotropic	one.	It	is	then	found	that	the	induced	polarization	and	the	internal	field	
—	both	uniform	for	ellipsoidal	bodies—	may	be	fully	expressed	in	terms	of	n	,	the	
susceptibility	and	the	applied	field.	This	result	is	well	known	for	isotropic	
materials,	but	has	never	been	fully	discussed	for	the	anisotropic	case38.	In	the	
linear	range	a	tensorial	relationship	—the	body's	polarizability,	function	of	n	and	
χ39—may	be	stablished	between	the	body's	electric	or	magnetic	moment	and	the	
applied	field,	just	as	in	the	molecular	case40.	

																																																								
	

38	 See	the	discussion	made	by	Landau	and	Lifchitz	in	pp.	58-61.	
39	 Landau	and	Lifchitz,	p.	7,	introduce	the	tensor	but	do	not	relate	it	to	n.	
40	 Kittel,	p.	459.	

 !!x̂α i x̂β =δαβ

!!
∇ = x̂ ∂

∂x
+ ŷ ∂

∂ y
+ ẑ ∂

∂z

 !!r '

 !!d2r '
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According	to	the	standard	definition	of	macroscopic	fields,	there	is	no	
polarization	inside	a	conductor	or	a	superconductor.	However,	a	fictive	
polarization	(in	this	book	called	equivalent	polarization)	may	be	defined	such	that	
the	problem	turns	out	to	be	equivalent	to	the	case	of	induced	polarization.	The	
equivalent	polarizations	gives	both	the	right	value	of	the	internal	fields	and	the	
body's	electric	and	magnetic	moments.	For	conductors	the	corresponds	to	the	limit	
of	a	perfect	dielectric,	that	of	infinite	electric	susceptibility.	For	a	superconductor,	
it	corresponds	to	the	limit	of	perfect	diamagnetism	where	the	diamagnetic	
susceptibility	equals	-1.	

The	integro-differential	equations	that	determine	induced	fields	and	internal	
polarizations	are	derived	for	all	cases	and	collected	in	Table	1.	An	ansatz	
corresponding	to	the	uniform	solution	satisfies	all	these	equations.	At	the	end	of	
Chapter	2	an	iterative	method	of	solving	the	integro-differential	equations	is	given,	
which	confirms	the	value	of	the	uniform	solutions.	

All	along	Chapter	2	the	depolarization	tensor	and	some	of	its	properties	are	
used	without	proof	in	order	to	show	its	convenience	and	way	of	use.	Its	definition	
and	elementary	analysis	starts	at	Chapter	3,	where	some	expressions	are	given	for	
the	tensor,	as	well	as	a	simple	method	for	determining	its	principal	values	in	the	
case	of	the	sphere,	the	infinitely	long	circular	cylinder	and	the	infinite	sheet	of	
constant	thickness.	Chapter	4	tackles	the	more	complex	case	of	the	spheroids,	
uniaxial	ellipsoid	and	elliptic	cylinder,	as	well	as	the	study	of	the	value	of	the	
depolarization	tensor	outside	the	body	for	triaxial	ellipsoids.	

Chapter	5	gives	a	(too)	brief	introduction	to	the	calculation	of	electromagnetic	
energies,	from	which	are	derived	the	expressions	for	forces	and	torques	exerted	on	
ellipsoidal	bodies	immersed	in	uniform	applied	fields.	Infinite	bodies	and	cavities	
are	discussed	at	the	end	of	this	chapter,	showing	the	inconsistencies	in	their	
standard	analysis	wich	usually	invokes	a	“rigid”	behaviour	of	the	polarization.	Both	
topics	present	difficulties	rarely	discussed	in	standard	textbooks;	they	deserve	a	
more	thorough	analysis	that	is	barely	sketched	here,	probably	a	whole	book.	
The	inclusion	of	Chapter	6,	which	gives	detailed	solutions	to	illustrative	

exercises	on	all	previously	discussed	topics,	requires	justification.	This	book	is	
neither	a	treatise	on	electromagnetism,	nor	one	on	the	theory	of	polarized	bodies.	
It	is	an	introduction	to	a	practical	method	of	calculation	of	static	electromagnetic	
properties	of	ellipsoidal	bodies	with	no	recourse	to	the	resolution	of	Laplace's	
equation,	that	is,	to	the	techniques	of	resolution	of	partial	differential	equations.	
Exercises	have,	therefore,	a	central	role,	but	here	they	are	not	dispersed	through	
the	text	as	is	customary.	Two	main	arguments	justify	grouping	them	in	a	single	
chapter.	

The	first	one	is	that	the	specificity	of	concrete	problems	distracts	the	reader	
from	the	main	line	of	reasoning.	In	the	few	ocasions	where	the	author	felt	that	the	
problem	is	relevant	to	this	reasoning,	an	actual	case	is	discussed	in	the	pertinent	
place,	but	a	link	is	algo	given	in	Chapter	6.	The	necessity	of	this	link	is	a	
consequence	of	the	second	justification	for	the	existence	of	this	chapter.		

This	book	is	conceived	as	a	complement	to	ordinary	texts	on	electromagnetism	
because	of	their	customary	lack	of	treatment	of	finite	bodies,	usually	reserved	to	
courses	with	advanced	knowledge	of	partial	differential	equations.	Therefore	—
although	the	author	does	not	recommend	it—	it	is	expected	that	its	use	will	be	
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occasional	and	fragmentary,	which	requires	special	provisions.	The	given	
organization	makes	the	selection	of	exercises	easier.	So	does	the	redundancy	in	the	
discussion	of	central	concepts	and	the	provision	of	a	detailed	alfabetical	index.	
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Chapter	2:	
Ellipsoids	in	Electric	and	Magnetic	Fields	

This	chapter	discusses	the	uniform	polarizations	—permanent,	induced	and	
equivalent—	and	the	fields	generated	when	homogeneous	ellipsoidal	bodies	are	
immersed	in	uniform	applied	fields.	Results	are	expressed	in	terms	of	the	
depolarization	tensor	n,	leaving	the	solution	of	specific	cases	for	Chapter	6.	

Electric	polarization	

Basic	equations	
The	discussion	of	the	subject	first	made	by	the	author	in	200841	is	here	modified	

in	order	to	make	its	understanding	easier.	The	electric	polarization	of	an	
ellipsoidal	body	V	is	usually	a	function	of	the	position	and	generates	an	electric	
field	 		

!
E !P(
!r ) 	derivable	from	a	potential42:	

	

 		
φP(
!r )= k1

!
P(!r ')i(!r − !r ´)
!r− !r ´ 3

d3r '
V
∫∫∫ , !EP(

!r )= −∇φP(
!r ). 	 (2.1)	

The	formula	is	the	extension	of	the	potential	of	a	point	dipole	to	the	case	of	a	
continuous	distribution,	the	macroscopic	representation	of	a	collection	of	neutral	
atoms	where	the	baricenters	of	the	nuclear	and	electronic	charges	do	not	coincide.	
Poisson	was,	apparently,	the	first	to	notice	that	

	
 		
φP(
!r )= − !P i∇( )k1 1

!r− !r ´
d3r '

V
∫∫∫ , 	 (2.2)	

The	characterization	of	a	uniformly	polarized	ellipsoidal	body	may	thus	be	derived	
from	that	of	a	uniformly	charged	one,	a	property	that	will	be	widely	used	in	this	
book.	
As	discussed	in	p.	7,	the	integrand	in	eq.	2.1	has	an	integrable	singularity.	It	is	

frequently	said	that	the	macroscopic	electromagnetic	fields	are	the	average	of	the	
microscopic	fields,	but	it	has	been	convincingly	argued	that	one	should	take,	

																																																								

	
41	 Solivérez	(2008).	
42	 Reitz,	p.	78	eq.	4-7.	
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instead,	the	average	of	the	potential43.	The	subject,	not	discussed	in	this	book,	is	
mentioned	only	because	the	depolarization	tensor	may	have	an	important	role	for	
determining	the	connection	between	those	two	scales44.	At	the	same	time,	a	good	
understanding	of	the	origin	of	fundamental	expressions	as	eq.	2.1	(and	similar	
magnetic	ones)	is	the	best	guide	for	the	interpretation	and	resolution	of	
mathematical	singularities	originated	in	mathematical	idealizations	of	actual	non-
singular	distributions	of	charge.	

The	potential	eq.	2.1	may	be	rewritten	in	two	different	ways.	The	first	one	will	
be	used	for	the	discussion	of	an	ellipsoidal	body	with	permanent	or	induced	
electric	polarization.	The	second	one,	for	conductors.	

Using	eqs.	A2.2	and	A2.5	the	integrand	of	eq.	2.1	may	be	rewritten	in	the	
following	fashion	:	

	

 		

φP(
!r )= k1

!
P(!r ')i(!r − !r ´)
!r − !r ´ 3

d3r '
V
∫∫∫ = −k1

!
P(!r ')i∇ 1

!r − !r ´
⎛

⎝
⎜

⎞

⎠
⎟ d3r '

V
∫∫∫ ,

−k1 ∇ i
!
P(!r ')
!r − !r ´

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
d3r '

V
∫∫∫ = −k1∇ i

!
P(!r ')
!r − !r ´

d3r '
V
∫∫∫ .

	 (2.3)	

The	last	step	requires	a	permutation	of	the	order	of	derivation	and	integration,	an	
operation	that	may	not	be	valid	for	singular	integrands.	The	problem	has	been	
studied	for	this	kind	of	integrals	in	the	gravitational	case	and	proven	to	be	
mathematically	valid45.	

The	total	electric	field	 !!

E(r ) 	is	the	vectorial	sum	of	the	uniform	applied	field	 !!


E0

and	the	induced	field	 !

EP :	

	
 		

!
E(!r )= !E0 −∇φP(

!r )= !E0 +k1∇ ∇ i
!
P(!r ')
!r − !r ´

d3r '
V
∫∫∫

⎛

⎝
⎜

⎞

⎠
⎟ , 	 (2.4)	

equation	valid	in	all	space	for	all	sorts	of	polarizations.	This	equation	will	be	the	
starting	point	for	the	treatment	both	of	permanent	and	induced	electric	
polarizations.	When	 !


P 	is	uniform	—even	if	it's	a	function	 !!


P( E int ) 	of	the	internal	

electric	field—	the	last	equation	may	be	rewritten	as	

																																																								

	
43	 M.C.	Vanwormhoudt,	On	the	definition	of	macroscopic	electric	and	magnetic	fields,	Physica	vol.	

42,	pp.	439-446	(1969).	
44	 M.	Widom,	Shape-Adapted	Ewald	Summation.	Dekker,	pp.	141-144.	Reitz,	pp.	81-83.	Jackson	

pp.	115.	
45	 MacMillan,	pp.	27-32.	
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!
E(!r )= !E0 +k1∇ ∇ i

1
!r − !r ´

d3r '
V
∫∫∫

⎛

⎝
⎜

⎞

⎠
⎟
!
P( !E int )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
. 	 (2.5)	

From	eqs.	3.3	and	A1.4,	it	follows	that	

	
 			

!
E(!r )= !E0 − λ

ε0
n(!r )i !P( !E int ) ∀!r , 	 (2.6)	

valid	both	inside	and	outside	V.	The	depolarization	tensor	n	is	defined	by	eq.	3.4,	
being	uniform	only	inside	ellipsoidal	bodies,	as	pointed	out	in	page	2.	In	order	to	
solve	this	equation	it	is	necessary	to	write	separate	expressions	for	the	regions	
inside	and	outside	the	body:	

	

 			

!
E int =

!
E0 − λ

ε0
N i
!
P( !E int ) para !r ∈V ,

!
E ext(!r )= !E0 − λ

ε0
next(!r )i !P( !E int ) para !r ∉V ,

	 	(2.7)	

where	 		
!
E int 	is	the	uniform	internal	electric	field,	 !!


E ext(r ) 	the	external	one,	N	the	

internal	depolarization	tensor	(uniform	for	ellipsoids)	and	 !!!n
ext(r ) 	the	non-uniform	

external	one	which	is	always	a	function	of	position	 !
r .	The	eigenvalues	of	matrix	N	

are	always	positive,	making	the	internal	electric	field	(and	the	magnetic	one,	as	will	
be	seen	later	for	the	ferromagnetic	case)	smaller	in	magnitude	than	the	applied	
one,	fact	that	gave	origin	to	the	tensor’s	name.	Equations	2.7	are	valid	both	for	
permanent	and	induced	polarizations,	but	each	case	is	solved	differently.	When	an	
ellipsoidal	body	is	uniformly	polarized—state	not	spontaneously	acquired	for	the	
permanent	case—	the	first	equation	shows	that	the	resulting	internal	electric	field	
is	also	uniform.	

Potential	eq.	2.3	may	be	expressed	in	terms	of	polarization	densities.	This	
requires	a	different	use	of	identities	A2.2	and	A2.5:	

	

 		

!
P(!r ')i(!r − !r ´)
!r − !r ´ 3

=
!
P(!r ')i∇' 1

!r − !r ´
=∇'i

!
P(!r ')
!r − !r ´

⎛

⎝
⎜

⎞

⎠
⎟ −

∇'i !P(!r ')
!r − !r ´

, 	 (2.8)	

where	∇'	operates	on	 .	Replacement	of	the	integrand	in	eq.	2.3	then	gives	

	
 		
φP(
!r )= k1 ∇'i

!
P(!r ')
!r− !r ´

⎛

⎝
⎜

⎞

⎠
⎟ d3r '

V
∫∫∫ −k1

∇'i !P(!r ')
!r − !r ´

d3r '
V
∫∫∫ . 	 (2.9)	

The	first	volume	integral	appears	well	suited	for	the	application	of	divergence	
theorem	eq.	A3.8,	and	most	textbooks	apply	it	without	further	ado,	replacing	it	

 !!r '
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with	a	surface	integral46.	In	fact,	further	analysis	is	required	because	 !

P 	has	a	step	

discontinuity	on	the	body's	surface	because	is	finite	inside	and	vanishes	outside.	
That	is,	the	derivatives	of	vector	 !


P 	do	not	fulfill	the	standard	conditions	for	the	

application	of	the	theorem	because	they	may	be	different	on	both	sides	of	the	
body's	surface47.	It	turns	out	that	this	does	not	affect	the	value	of	the	divergence	in	
the	volume	integral	and	of	the	flux	in	the	surface	integral.	The	proof	is	sketched	in	
Appendix	3	(see	the	derivation	of	eq.	A3.21).	

It	is	thus	obtained	

	

 		

φP(
!r )= k1

ρP(
!r ')
!r − !r ´

d3r '
V
∫∫∫ +k1

σ P(
!r ')d2r '
!r − !r ´S

"∫∫ ,

where ρP(
!r )= −∇ i

!
P(!r ), σ P(

!r )= !P(!r )i ŝ(!r ).
	 (2.10)	

where	 	is	the	unit	vector	normal	to	
surface	S	at	point	 	(see	eq.	A7.8).	These	
charges,	as	real	as	the	conduction	ones,	
originate	in	the	relative	displacement	of	
the	baricenters	of	nuclear	and	electronic	
charges	of	atoms	and	molecules.	The	
expression	will	later	used	for	solving	the	
case	of	conductors.	As	only	uniform	
polarizations	will	be	considered	in	this	
book,	ρP	vanishes	and	the	only	
contribution	to	the	electric	field	is	that		

	
Figure	1.	Origin	of	the	
depolarization	effect.	

of	the	surface	density	of	charge	σP.	This	explains	the	fact	that	inside	the	body	the	
magnitude	of	the	electric	field	is	smaller	than	in	the	outside,	as	shown	in	Figure	1.	

The	electric	displacement	vector	 !!

D(r ) 	is	introduced	in	order	to	discriminate	the	

polarization	charges,	bound	to	atoms	and	molecules,	from	the	free	conduction	
ones:		
	  		

!
D(!r )= ε0

!
E(!r )+λ !P(!r ). 	 (2.11)	

This	constitutive	equation	for	the	electric	case	will	be	seldom	used	here,	the	
magnetic	case	being	quite	different.	

Permanent	electric	polarization	

The	necessary	condition	for	the	presence	of	permanent	electric	polarization	is	
for	some	atoms	or	molecules	of	the	material	—ferroelectric,	electret	or	the	like	
below	their	critical	temperature—	to	have	a	finite	electric	dipole	moment	in	the	
absence	of	an	applied	electric	field	( ).	The	state	of	polarization	of	these	

																																																								

	
46	 See,	for	instance:	Reitz,	eq.	4-12	in	p.	78.	
47	 J.	Rey	Pastor,	P.	Pi	Calleja,	and	C.	Trejo,	Análisis	Matemático	vol.	1,	p.	437	(1959,	4th	edition).	

 !!ŝ(
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materials	depends	on	the	body's	internal	field	 !!E
int(r ) ,	but	also	on	other	

microscopic	and	macroscopic	phenomena.	The	dominant	ones	among	the	former	
are	the	atomic	and	molecular	interactions,	whose	magnitude	may	outweight	the	
applied	field.	Among	the	latter	the	most	important	ones	are	the	atomic	and	
molecular	vibrations	(temperature)	and	the	existence	of	domains,	local	ordering	of	
electric	moments	that	tends	to	minimize	their	interaction	energy.	The	influence	of	
domains	is	a	difficult	topic	because	their	size	and	statistical	distribution	are	
critically	dependent	on	the	material's	thermal	history,	their	evolution	consisting	in	
transitions	between	metaestable	states48.	This	leads	to	irreversibility	(hysteresis)	
and	a	usually	non-uniform	polarization.	
A	reasonable	approximation	to	uniform	polarization	may	be	obtained	with	a	

controlled	process	involving	a	combined	variation	of	temperature	and	the	
application	of	a	high	field	(saturation).	Once	a	sufficiently	uniform	polarization	has	
been	obtained,	one	has	to	determine	its	value.	The	most	common	way	of	doing	this	
is	to	suspend	the	body	in	a	uniform	field	and	measure	the	applied	torque.	The	
relationship	between	field	and	torque	involves	the	depolarization	tensor	(see	the	
corresponding	section	in	page	105).	
In	this	book	no	further	details	will	be	given	of	these	topics,	which	are	

thoroughly	discussed	in	specialized	books	and	scientific	journals.	What	matters	
here	is	that	—whatever	the	method	used—	the	necessary	condition	for	a	uniform	
permanent	polarization,	although	not	a	sufficiente	one,	is	an	ellipsoidal	shape.	
Edges	and	corners,	for	example,	are	examples	of	shapes	that	preclude	a	state	of	
uniform	polarization	even	in	extremely	high	applied	fields.	

When	a	uniform	permanent	polarization	 !

P 	is	stablished	and	its	value	is	

determined,	the	depolarization	tensor	method	can	be	used	to	calculate	both	the	
internal	and	external	electric	field	through	eqs.	2.7.	These	equations,	rewritten	in	
matrix	notation,	read	

	

 			

Eint = E0 − λ
ε0
N iP(Eint ) for !r ∈V ,

Eext(!r )= E0 − λ
ε0
next(!r )iP(Eint ) for !r ∉V .

	 (2.12)	

The	external	field	!!Eext 	cannot	be	determined	without	solving	first	the	equation	
for	for			Eint 	and	then	replacing	its	value	in	the	second	of	eqs.	2.12.	This	requires	the	
knowledge	of	the	function	 !!


P( E int ) ,	which	in	the	isotropic	case	is	usually	taken	to	be	

Langevin's	function49.	Problem	06	of	chapter	5	gives	a	tentative	graphical	method	
for	this	determination.	In	anisotropic	materials	the	solution	requires	the	separate	

																																																								

	
48	 Brown	(1963).	
49	 Dekker,	pp.	138	and	192.	
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determination	of	a	number	of	functions	determined	by	the	single	crystal	
symmetries	(see	Appendix	5).	

Induced	electric	polarization	
In	the	absence	of	permanent	polarization	the	induced	polarization	is	usually	

only	a	function	of	the	applied	field	 		
!
E0 , 	the	electric	susceptibility	!χe 	of	the	

magnetic	material50	and	the	body's	shape.	This	is	so	because	the	state	of	
polarization	of	any	point	of	the	body	depends	on	the	internal	electric	field,	the	
addition	of	the	applied	field	and	that	generated	by	the	rest	of	the	body.	The	
induced	field	should,	therefore,	be	determined	in	a	self-consistent	way,	its	value	at	
each	point	depending	on	the	value	at	all	other	points.	The	mathematical	expression	
of	this	dependence	is	clearly	expressed	by	the	integral	eq.	2.31.		

The	applied	field,	the	polarization	and	the	total	electric	field	are	in	general	not	
parallel	due	to	a	combination	of	the	anisotropy	of	the	susceptibility	(a	material	
property)	and	the	shape	anisotropy,	a	geometric	property	characterized	by	the	
depolarization	tensor,	linear	only	in	the	case	of	ellipsoidal	bodies.	That	is,	the	
linearity	of	the	relationship	between	the	polarization	and	the	applied	field	is	not	a	
mere	consequence	of	the	linearity	of	the	field	equations,	as	invoked	by	Landau	and	
Lifschitz	to	justify	the	introduction	of	the	body's	polarizability	tensor.	They	claim	
there	that51	Since	all	the	field	equations	are	linear,	it	is	evident…	In	fact,	there	is	a	
complex	relationship	among	the	applied	field	components,	the	ensuing	
polarization	and	the	resulting	total	field,	mediated	by	the	material's	properties	and	
the	body's	geometry.	In	the	treatment	made	by	standard	texts	on	the	theory	of	
electromagnetism	these	relationships	are	hidden	in	the	boundary	conditions	of	
differential	equations.	In	the	method	described	by	this	book	both	the	anisotropy	of	
the	material	and	the	influence	of	geometry	are	explicitly	expressed	by	the	
susceptibility	and	depolarization	tensors,	while	the	interrelationship	among	fields	
is	expressed	in	terms	of	linear	systems	of	equations	among	components,	clearly	
visible	and	soluble	in	matrix	representation.	A	better	understanding	of	this	
abstract	behaviour	may	be	obtained	from	a	concrete	illustration.	Two	specific	
examples	are	given	to	that	end,	the	first	one	in	Figure	2,	the	second	in	the	following	
section.	
Figure	2	is	a	storyboard	of	the	timed	sequence	of	interactions	of	two	polarizable	

atoms	subject,	in	vacuum,	to	an	applied	field.	The	same	problem	is	next	
mathematically	solved	using	matrices,	in	a	fashion	closely	resembling	the	
depolarization	tensor	method,	to	which	it	is	an	introduction.	

The	figure	relies	on	the	experimental	fact	that	fields	do	not	act	instantaneously,	
but	propagate	with	the	velocity	c	of	electromagnetic	waves.	The	applied	field	
arrives	to	atom	1	at	time	t1,	inducing	a	dipole	moment	which	acquires	its	full	value	
in	a	later	time	t2,	when	atom	2	is	still	unpolarized.	At	time	t3	the	applied	field	
arrives	to	atom	2,	but	not	so	the	one	created	by	the	dipole	moment	induced	on	
atom	1.	Molecule	2	acquires	its	initial	dipole	moment	at	time	t4,	but	this	value	will	
change	when	the	induced	field	of	atom	1	reaches	its	location.	Shortly	after	that,	at	
																																																								

	
50	 Remember	that	this	is	a	low	field	approximation,	the	most	common	but	not	universal	case.	
51	 Landau	and	Lifchitz,	p.	7.	
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time	t5,	the	modified	dipole	moment	of	atom	2	is	fully	stablished.	But	the	process	
does	not	end	here,	because	atom	2	creates	a	new	induced	field	that	acts	on	atom	1,	
modifying	again	its	dipole	moment	at	time	t6.	The	succesive	changes	of	
polarizations	and	fields	take	a	certain	time	to	reach	a	value	within	a	small	but	non-
zero	precission	range.	It	is	thus	clearly	seen	how	the	values	obtained	are	
necessarily	self-consistent,	because	the	dipole	moment	of	each	atom	depends	on	
that	of	the	other	through	the	induced	fields	created	by	both.	

	
Figure	2.	Autoconsistent	mutual	polarization	of	two	atoms.	

Induced	electric	polarization	of	two	interacting	atoms	
In	order	to	find	the	equilibrium	values	of	the	induced	electric	dipole	moments	

and	total	field	it	will	be	assumed	that	both	atoms	are	identical,	isotropic	and	have	
no	permanent	electric	moments.	This	happens,	for	instance,	for	closed	electronic	
shells.	The	atoms,	a	distance	d	apart,	are	immersed	in	a	uniform	applied	electric	
field	E0	and	the	induced	fields	will	be	calculated	using	the	point	dipole	microscopic	
model.	

Under	the	influence	of	an	applied	uniform	field	E0,	electric	dipole	moments	p(1)	
and	p(2)	are	induced	on	the	atoms	at	r(1)	and	r(2.	In	the	linear	range,	for	an	isotropic	
atom	j	its	induced	dipole	moment	is	related	to	the	microscopic	electric	field	
experienced	by	
	 p(j)	=	γ	E(r(j)),	 (2.13)	

where	constant	γ		is	the	same	for	both	atoms.	Field	E(r(1))	is	the	addition	of	the	
applied	field	E0	and	the	field	E(2)(r(1))	generated	at	r(1)	by	the	dipole	moment	of	the	
atom	at	r(2).	In	the	rest	of	this	section	arguments	of	functions	are	always	field	
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points	and	upper	indices	identify	source	points.	Using	eq.	A4.5	and	the	following	
property	of	the	interatomic	distance52	

	 	 (2.14)	

it	turns	out	that	a	matrix	m	may	be	defined	for	both	atoms,	in	terms	of	vector	 		
!
d , 	

such	that	

	  			E
(1)(r(2))= k1m ip(1) , E(2)(r(1))= k1m ip(2). 	 (2.15)	

From	eq.	A4.5	it	is	obtanined	

	

 			

m = 1
d5

3dx2 −d2 3dxdy 3dxdz
3dydx 3dy2 −d2 3dydz
3dzdx 3dzdy 3dz2 −d2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

,

where d =
!
d = dx

2 +dy
2 +d2z ,

	 (2.16)	

!dα 	being	the	components	of	vector	 !!

d. 	

From	eq.	2.13,	it	follows	that	the	fields	and	dipole	moments	are	determined	by	
the	following	system	of	equations:	

	 	 (2.17)	

where	it	is	clearly	seen	that	the	field	on	atom	1	(upper	equation)	explicitly	
depends	of	the	field	on	atom	2.	As	the	field	on	atom	2	explicitly	depends	of	the	field	
on	atom	2	(lower	equation),	this	self-consistency	is	expressed	by	the	following	pair	
of	matrix	equations	(that	is,	a	system	of	6	linear	equations):	

	 	 (2.18)	

As	the	two	atoms	are	identical,	upon	its	exchange	the	system	remains	
unchanged.	That	is,	E(r(1))	=	E(r(2)).	This	symmetry	argument	may	be	verified	by	
substracting	the	second	equation	from	the	first	obtaining	

	 	 (2.19)	

where	1	is	the	unit	matrix.	That	is	

																																																								

	
52	 The	notation,	which	appears	to	be	excessively	detailed,	is	well	suited	for	the	calculation	of	

lattice	sums,	the	microscopic	fields	created	in	single	crystals	by	ordered	atoms	and	molecules.	

 !!

d (1)(r (2))= r (2) − r (1) =


d = −


d (2)(r (1))= −(r (1) − r (2)),

 !!!

E(r(1))= E0 +E(2)(r(1))= E0 +k1m ip(2) = E0 +k1m iγ E(r(2)),
E(r(2))= E0 +E(1)(r(2))= E0 +k1m ip(1) = E0 +k1m iγ E(r(1)),

 !!!E(r
(1))= E0 +k1γm iE(r(2)), E(r(2))= E0 +k1γm iE(r(1)).

 !!!E(r
(1))−E(r(2))=1i E(r(1))−E(r(2))( ) = k1γm i E(r(2))−E(r(1))( ) ,
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	 	 (2.20)	

As	the	left	member's	square	matrix	is	non-singular	(see	below),	the	column	matrix	
must	vanish,	verifying	that	

	 	 (2.21)	

Therefore,	the	original	two	equations	system	reduces	to	the	single	matrix	equation	
(notice	the	similarity	with	the	second	of	eqs.	2.7)	

	 	 (2.22)	

from	which	E	may	be	obtained,	as	follows:	

	 	 (2.23)	

Matrix	1-k1γ  m	inverse	is	easily	obtained	in	the	coordinate	system	where	it	is	
diagonal	(its	principal	one),	usually	corresponding	to	the	atomic	system	highest	
symmetry.	In	this	case	the	highest	symmetry	is	an	arbitrary	rotation	around	the	
atomic	axis	defined	by	vector	 .	In	fact,	if	one	chooses	a	coordinate	system	such	
that	both	atoms	are	on	axis	z,	and	the	origin	is	arbitrarily	chosen	to	be	on	atom	1,	it	
is	obtained	

	

			

dx = dy =0, dz = d , m =
−1/d3 0 0
0 −1/d3 0
0 0 2/d3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
. 	 (2.24)	

Then	

	

 			

E =
Ex
E y

Ez

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 1−k1γm( )−1 iE0

=

1/1+k1γ /d3 0 0
0 1/1+k1γ /d3 0
0 0 1/1−2k1γ /d3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

i

Ex
0

Ey
0

Ez
0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
.

	 (2.25)	

Choosing	the	proportionality	constant	in	such	a	way	that	both	members	have	
the	same	units	(see	eq.	A1.3),	one	may	define	the	atomic	electric	polarizability	
tensor	!αe 	by	

	
 			
p= γ E =

ε0
λ
αe iE

0 , where αe =
λ
ε0
γ 1−k1γm( )−1 . 	 (2.26)	

 !!! 1−k1γm( )i E(r(1))−E(r(2))( ) =0.

!!E(r
(1))= E(r(2))= E.

 !!!E = E
0 +k1γm iE,

 !!! 1−k1γm( )iE = E0 , E = 1−k1γm( )−1 iE0.

 !

d
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The	matrix	C	relating	the	resultant	to	the	applied	field,	E	=	C	·	E0,	has	the	typical	
form	of	the	tensorial	properties	of	uniaxial	materials53,	

	  			

C =

c⊥ 0 0
0 c⊥ 0
0 0 c

!

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

where c⊥ < c! ,

	 (2.27)	

in	the	single	crystal's	principal	coordinate	system.	A	simple	estimation	illustrates	
that	the	difference	in	value	of	these	two	coefficients	is	easily	measurable.	k1γ		is	of	
order	R3,	R	being	the	atomic	radius54.	In	solids	the	interatomic	distance	d	is	or	
order	2R.	Therefore,	k1γ	/d3	is	about	0,1	which	gives	

	 	 (2.28)	

the	parallel	coefficient	being	about	37%	larger	than	the	one	perpendicular	to	the	
interatomic	axis.	

The	previous	calculation	corresponds	to	the	local	field	of	solid	state	physics,	the	
microscopic	electric	field	experienced	by	an	atom.	This	field	does	not	coincide	with	
the	macroscopic	one	described	by	Maxwell's	equations,	a	suitable	average	of	the	
former	or	its	potential	over	a	single	crystal's	unit	cell	or	a	sufficiently	large	number	
of	atoms	or	molecules	in	the	policrystalline	or	amorphous	case.	An	important	
feature	of	macroscopic	fields,	as	discussed	in	page	6,	is	that	any	of	the	body's	
internal	points	is	both	a	field	and	a	source	point.	The	singularities	thus	created	did	
not	arise	in	the	previous	treatment	because	point	dipoles	where	used.	A	
consequence	of	this	approximation	is	that	matrix	m	corresponds	to	the	exterior	
depolarization	tensor	next,	as	shown	by	its	zero	trace	(see	eq.	3.15).	This	suggests	
that	it	may	not	be	feasible	to	obtain	the	internal	depolarization	tensor	N	as	an	
average	of	microscopic	tensors	like	m,	unless	significative	mathematical	and	
conceptual	changes	are	made	in	the	treatment.	On	the	other	hand,	atoms	are	not	
geometrical	points,	but	no	concept	related	to	the	depolarization	tensor	seems	to	
have	been	introduced	for	its	(necessarily)	quantum	analysis.	

Dielectrics	
As	in	the	case	of	permanent	polarization,	the	starting	point	is	eq.	2.12.	In	most	

dielectrics	applied	fields	are	significantly	smaller	than	the	effective	electric	fields	
of	quantum	interactions	among	electrons.	It	is	then	valid	to	keep	only	first	order	
terms	in	the	Taylor's	expansion	of	 :	

	
 		
!
P(!r )= ε0

λ
χ e i
!
E(!r ). 	 (2.29)	

																																																								

	
53	 Nye,	p.	23	Table	3,	see	Appendix	5	in	the	present	book.	
54	 Dekker,	p.	135.	C.	Kittel,	Introduction	to	Solid	State	Physics,	Wiley	and	Sons,	p.	229,	1979.	

 !!
k1γ
d3

≈0,10, c⊥ ≈0,91, c ≈1,25,

 !!

P( E(r ))
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There	is	no	general	agreement	on	the	constant	one	should	use	for	the	definition	of	
electric	susceptibility.	The	adimensional	definition	given	above	and	in	the	book	by	
Stratton55	simplifies	our	main	formulas,	while	Reitz	convention	introduces	no	
factor	in	eq.	2.2956.	The	reader	should	carefully	verify	the	definition	used	by	his	
favourite	author.	With	the	above	convention	the	following	value	of	electric	
permeability	ε 	is	obtained,	

	  			
!
D= ε0

!
E +λ

!
P = ε0

!
E + ε0χ e i

!
E = ε i

!
E , where ε = ε0(1+ χ e ). 	 (2.30)	

In	homogeneous	materials,	the	only	ones	studied	in	this	book,	the	adimensional	
electric	susceptibility 	is	a	uniform	and	symmetric	rank	2	tensor57	which	
reduces	to	a	scalar	in	the	cases	of	non	textured	policrystalline	and	amorphous	
materials.	In	the	anisotropic	case	some	of	its	components	may	be	related,	
depending	on	the	symmetries	of	the	material's	crystalline	structure58.	
From	eq.	2.5,	the	total	electric	field	due	to	the	application	of	a	uniform	field	to	a	

dielectric	with	the	linear	property	eq.	2.29	satisfies	the	equation	

	
 		

!
E(!r )= !E0 + 1

4π ∇ ∇ i
χ e i
!
E(!r ')
!r− !r '

d3r '
V
∫∫∫

⎛

⎝
⎜

⎞

⎠
⎟ . 	 (2.31)	

This	system	of	integro-diferential	equations	univocally	determines	the	electric	
field59	and,	through	eq.	2.29,	the	polarization.	In	the	permanent	polarization	case	
the	internal	field's	uniformity	was	a	consequence	of	a	deliberately	stablished	
uniform	polarization.	Here,	on	the	contrary,	the	uniform	character	of	the	field	is	a	
consequence	of	eq.	2.31,	from	which	follows	that	of	the	polarization.	

A	uniform	internal	electric	field	 !!

E int 	provides	a	solution	to	eqs.	2.31	if	the	

following	equations	are	satisfied	(which	are	easily	obtained	in	the	same	way	as	
eqs.	2.7):	

	

 			

!
E int =

!
E0 −N i χ e i

!
E int , !P =

ε0
λ
χ e i
!
E int for r∈V ,

!
E ext(!r )= !E0 − λ

ε0
next(!r )i !P for r∉V .

	 (2.32)	

In	matrix	representation	it	is	easy	to	obtain	Eint	from	the	first	equation	from	which	
the	values	of	P	and	Eext	immediately	follow:	

																																																								

	
55	 Stratton,	p.	12	eq.	8.	
56	 Reitz,	p.	86.	
57	 Landau	and	Lifchitz,	p.	58.	
58	 Nye,	p.	23	Table	3:	see	Appendix	5	of	the	present	book.	
59	 See	the	initial	discussion	in	Solving	the	integro-differential	equations	by	iteration.	

!χ e
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Eint = 1+N i χe( )−1i E0 for r∈V ,

P=
ε0
λ
χ e i E

int =
ε0
λ
χ e i 1+N i χe( )−1i E0 ,

p=VP=
ε0
λ
αe i E

0 , αe =V χ e i 1+N i χe( )−1 ,
Eext(!r )= E0 − λ

ε0
next(!r )iP for r∉V ,

	 (2.33)	

where	A-1	is	the	inverse	of	matrix	A.	The	relationship	between	the	geometry	of	
ellipsoidal	bodies	and	electric	polarization	P	was	stablished	by	Landau	and	
Lifschitz	for	the	isotropic	case60	through	a	generalization,	which	is	not	a	proof,	of	
the	results	obtained	for	the	sphere	and	the	infinitely	long	cylinder:	

The	existence	of	such	a	relationship	follows	from	the	form	of	the	
boundary	conditions,	as	we	saw	above	on	the	examples	of	the	sphere	and	
the	cylinder.	

The	geometric	connection,	previously	extended	by	this	author	to	the	anisotropic	
electric	case61,	is	but	a	simple	consequence	of	the	method	that	allows	the	
introduction	of	!αe , 	the	body’s	electric	polarizability	tensor	with	units	of	volume:	

	
 			
p=VP=

ε0
λ
αe iE

0 , αe =Vχe i 1+N i χe( )−1 . 	 (2.34)	

This	tensor	was	defined	by	Landau	and	Lifschitz62	only	for	conductors	and	
magnetic	materials.	Notice	the	non-casual	similarity	of	the	formula	with	eq.	2.26.	
This	tensor	will	be	used	in	Chapter	5	for	the	calculation	of	the	body's	energy	and	
applied	torques.	

Magnetization	

The	behaviour	of	ellipsoidal	bodies	under	applied	uniform	magnetic	fields	 !!

H0—

the	first	work	published	by	the	author	on	the	depolarization	tensor	method63—	
may	be	solved	in	a	similar	way	as	the	electric	case.		

Basic	equations	

Unlike	the	electric	case	—where	the	treatment	of	polarized	matter	is	done	using	
the	fundamental	field	 !


E—	in	the	permanent	and	induced	magnetic	cases	use	is	

																																																								

	
60	 Landau	and	Lifchitz,	p.	44.	
61	 Solivérez	(2008),	eq.	17.	
62	 Landau	and	Lifchitz,	pp.	7	and	192.	
63	 Solivérez	(1981).	
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made	of	the	auxiliar	field	 !!

H. 	The	magnetic	induction	 !


B 	will	be	used	only	in	the	

case	of	superconductors,	where	use	must	be	made	of	the	constitutive	eq.	A1.10,	

	  		
!
B = µ0(

!
H +λ ' !M). 	 (2.35)	

The	reason	for	using	the	magnetic	field	instead	of	the	magnetic	induction	is	that	
all	equations	can	then	be	derived	as	for	the	electric	case	because	of	the	existence	of	
the	following	magnetic	potential	!φM

64:	

	

 		

!
HM(
!r )= −∇φM(

!r ), where φM(
!r )= λ '

4π

!
M(!r ')i(!r − !r ')
!r− !r ' 3

d3r '
V
∫∫∫ . 	 (2.36)	

Besides,	 	
!
H plays	a	distinguished	role	in	the	study	of	permanente	magnets.	The	

given	equation	is	similar	to	eq.	2.1	of	the	electrostatic	case.	In	the	same	fashion	as	
for	the	derivation	of	eq.	2.5,	one	obtains,	upon	addition	of	an	applied	uniform	field,	
that	the	total	magnetic	field	is	

	

 		

!
H(!r )= !H0 + λ '

4π ∇ ∇ i
1
!r − !r ´

d3r '
V
∫∫∫

⎛

⎝
⎜

⎞

⎠
⎟
!
M

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
. 	 (2.37)	

This	equation,	the	basis	of	the	analysis	of	permanent	and	induced	polarizations	of	
ellipsoidal	bodies,	is	valid	in	all	space	independently	of	the	source	and	spatial	
dependence	of	 !!


M(r ). 	When	 !


M 	is	uniform,	case	in	which	no	argument	is	written,	

the	previous	equation	becomes	

	
 		

!
H(!r )= !H0 + λ '

4π ∇ ∇ i
1
!r − !r ´

d3r '
V
∫∫∫

⎛

⎝
⎜

⎞

⎠
⎟
!
M

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
. 	 (2.38)	

From	eq.	3.3	it	follows	that	

	  			
!
H(!r )= !H0 −λ 'n(!r )i !M( !H) ∀!r . 	 (2.39)	

As	previously	done	for	the	electric	case,	it	is	more	convenient	to	rewrite	this	
equation	in	order	to	explicitly	separate	the	body's	internal	and	external	regions:	

	
 			

!
H int =

!
H0 −λ 'N i

!
M( !H int ) for !r ∈V ,

!
Hext(!r )= !H0 −λ 'next(!r )i !M( !H int ) for !r ∉V .

	 (2.40)	

These	equations	are	valid	both	for	permanent	and	induced	polarizations,	but	they	
are	solved	differently	in	each	case.	Therefore,	if	an	ellipsoidal	body	is	uniformly	

																																																								

	
64	 A	detailed	reading	of	pp.	189-194	of	Reitz's	book	is	recommended.	
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magnetized	(which	requires	a	nontrivial	preparation),	the	resulting	internal	
magnetic	field	is	also	uniform.	

For	the	treatment	of	superconductors	it	is	convenient	to	derive	the	magnetic	
field	from	the	surface	density	of	current,	case	that	bears	no	resemblance	to	that	of	
a	surface	density	of	charge	(conductors).	To	that	end	it	is	convenient	to	use	the	
magnetic	induction,	derivable	from	the	following	vector	potential65:	

	

 		

!
AM(
!r )= µ0λ '

4π

!
M(!r ')×(!r − !r ')
!r− !r ' 3

d3r '
V
∫∫∫ , !B(!r )=∇×

!
AM(
!r ), 	 (2.41)	

The	integrand	may	now	be	transformed	using	eqs.	A2.2	and	A2.8,	obtaining	

	

 		

!
AM(
!r )= µ0λ '

4π

!
M(!r ')×(!r − !r ')
!r− !r ' 3

d3r '
V
∫∫∫ =

µ0λ '
4π

!
M(!r ')×∇' 1

!r− !r '
⎛

⎝
⎜

⎞

⎠
⎟ d3r '

V
∫∫∫

=
µ0λ '
4π

∇'× !M(!r ')
!r− !r '

d3r '
V
∫∫∫ −

µ0λ '
4π ∇'×

!
M(!r ')
!r− !r '

⎛

⎝
⎜

⎞

⎠
⎟ d3r '

V
∫∫∫ .

	 (2.42)	

The	last	volume	integral	may	be	transformed	into	a	surface	one	by	the	curl	
theorem	eq.	A3.10,	where	due	atention	should	be	paid	to	the	step	discontinuity	
through	the	body's	surface	(see	eq.	A3.22).	It	is	thus	obtained	

	

 		

!
AM(
!r )= µ0λ '

4π

!
JM(
!r ')

!r− !r '
d3r '

V
∫∫∫ +

µ0λ '
4π

!
KM(
!r )

!r− !r '
d2r '

S
"∫∫ ,

where !JM(
!r )=∇×

!
M(!r ), !KM(

!r )= !M(!r )× ŝ(!r ),
	 (2.43)	

	where	 !!ŝ(
r ) 	is	the	unit	vector	normal	to	surface	S	at	point	 !r 	(see	eq.	A7.8),	 !


JM 	is	

the	volume	density	of	magnetization	current	and	 !

KM 	the	surface	density.	

The	previous	equations	show	how	magnetization	may	originate	from	currents	
localized	in	the	interior	and	on	the	surface	of	the	body.	The	validity	of	this	
interpretation	for	superconductors	is	discussed	in	the	relevant	section	and	will	be	
also	used	to	show	that	they	behave	as	perfect	diamagnetic	materials.	

Permanent	magnetization	

The	study	of	spontaneous	magnetization	and	the	phenomena	of	saturation	and	
hysteresis	preceded	that	of	ferroelectric	materials,	which	took	their	name	from	
ferromagnets.	As	discussed	in	the	ferroelectric	case,	a	magnetization	is	in	general	
not	only	a	function	of	the	applied	magnetic	field,	the	material	and	its	shape,	but	
also	of	its	own	buildup	process.		

																																																								

	
65	 Reitz,	p.	190	eq.	9-11.	
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The	resulting	equations	2.40	are	similar	to	those	obtained	in	page	18	for	
permanent	electric	polarization.	Writing	them	in	matrix	representation	it	is	
obtained	

	
 			

Hint =H0 −λ 'N iM(Hint ) for !r ∈V ,
Hext(!r )=H0 −λ 'next(!r )iM(Hint ) for !r ∉V . 	 (2.44)	

The	scalar	and	isotropic	version	of	the	first	equation,	with	M(H)	proportional	to	
Brillouin's	function66,	is	customarily	used	in	the	study	of	ferromagnetism67.	The	
applied	field,	the	magnetization	and	the	total	field	have	in	general	different	
directions.	The	same	thing	happens	in	isotropic	materials	for	all	but	spherical	
bodies,	due	to	the	geometrical	anisotropy	introduced	by	the	depolarization	tensor	
n	(see	Problem	06).	

Induced	magnetization	

Unlike	the	electric	case,	in	the	magnetic	one	there	are	two	different	types	of	
induced	polarization:	diamagnetic	and	paramagnetic.		Diamagnetism	is	a	
manifestion	of	Lenz'	Law,	a	change	in	the	orbital	circulation	of	electrons	that,	as	
happens	with	any	current,	generates	a	field	that	opposes	the	applied	one.	
Paramagnetism	stems	from	the	orientation	of	the	permanent	magnetic	moments	of	
atoms	without	closed	electronic	shells.	Both	types	are	well	described	in	the	linear	
range	by	

	  		
!
M(!r )= 1

λ ' χm i
!
H(!r ), 	 (2.45)	

where	!χm 	is	the	magnetic	susceptibility,	a	symmetric	rank	two	tensor68.	As	in	the	
electric	case,	there	is	no	general	agreement	on	the	definition	of	magnetic	
susceptibility,	and	the	reader	should	check	the	one	used	by	his	favourite	author,	
introducing	the	necessary	additional	constants.	The	definition	given	by	eq.	2.45	
simplifies	the	formulas	eqs.	2.49.	The	magnetic	susceptibility	is	a	negative	definite	
tensor	in	the	diamagnetic	case	and	a	ositive	definite	one	in	the	paramagnetic	case,	
uniform	for	all	the	homogeneous	materials	studied	in	this	book	and	a	scalar	for	
policrystalline	non-textured	and	amorphous	materials.	In	the	single	crystal	
anisotropic	case	its	components	have	relationships	determined	by	the	symmetry	
of	the	material's	lattice	structure69.	

																																																								

	
66	 Dekker,	pp.	454-455.	
67	 Dekker,	p.	466.	
68	 Landau	and	Lifchitz,	p.	58.	
69	 Nye,	p.	23	Table	3.	See	Appendix	5	in	the	present	book.	
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For	induced	magnetizations	eq.	2.37	reduces	to	

	
 		

!
H(!r )= !H0 + 1

4π ∇ ∇ i
χm i
!
H(!r ')
!r− !r '

d3r '
V
∫∫∫

⎛

⎝
⎜

⎞

⎠
⎟ , 	 (2.46)	

system	of	integro-differential	equations	that	univocally	determines	the	magnetic	
field.	When	 !!


H int 	is	uniform	inside	the	body	—case	in	which	the	spatial	argument	is	

omitted—	the	previous	equation	reduces	to	

	
 		

!
H int =

!
H0 + 1

4π ∇ ∇ i
χm i
!
H int

!r− !r '
d3r '

V
∫∫∫

⎛

⎝
⎜

⎞

⎠
⎟ . 	 (2.47)	

From	eq.	3.3	it	is	then	obtained:	

	

 			

!
H int =

!
H0 −N i χm i

!
H int , !H int = 1+N i χm( )−1 i

!
H0 for !r ∈V ,

!
Hext(!r )= !H0 −λ 'n(!r )i !M for !r ∉V ,
!
M = 1

λ ' χm i
!
H int = 1

λ ' χm i 1+N i χm( )−1 i
!
H0 ,

!m=V
!
M = 1

λ 'αm i
!
H0 , αm =V χm i 1+N i χm( )−1 .

	 (2.48)	

 !
m 	is	the	magnetic	dipole	moment	and	!αm 	is	the	ellipsoidal	body's	magnetic	
polarizability	tensor.	

In	matrix	representation	the	previous	equations	are	written	

	

 			

Hint = 1+N i χm( )−1 iH0 for !r ∈V ,
Hext(!r )=H0 −λ 'n(!r )iM for !r ∉V ,

where M= 1
λ 'χm i 1+N i χm( )−1 iH0 ,

m =VM= 1
λ 'αm iH0 , αm =Vχm i 1+N i χm( )−1 .

	 (2.49)	

Conductors	
If	a	conducting	body	with	zero	net	charge	is	placed	in	an	applied	uniform	field	
,	a	surface	density	of	charge	σ		is	induced	such	that,	in	the	equilibrium	state,	the	

internal	field	vanishes.	The	cancellation	is	not	instantaneous	but	the	culmination	of	
a	dynamic	process	in	which	the	body's	surface	electric	charges	are	redistributed.	
Electric	forces	alone	do	not	suffice,	as	shown	by	Earnshaw's	Theorem	70:	electrons	
move	in	order	to	be	as	far	away	as	possible	from	each	other,	being	stopped	only	by	
																																																								

	
70	 Stratton,	p.	116.	The	theorem	stablishes	that	no	charge	may	be	in	stable	equilibrium	under	the	

effect	of	only	a	macroscopic	electric	field.	

 !!

E0
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the	atomic	forces	that	prevent	them	from	escaping	from	the	body	at	normal	
temperatures	(at	high	temperatures	thermoionic	emission	—Edison	Effect—	takes	
place71).	The	vanishing	of	the	internal	electric	field	—valid	for	conducting	bodies	of	
any	shape,	not	only	ellipsoids—	is,	therefore,	an	additional	condition	to	the	laws	of	
electrostatics,	not	a	consequence	of	them:	

	  		
!
E int =0. 	 (2.50)	

The	total	electric	field	may	be	written	in	terms	of	the	applied	one	and	the	
resulting	—but	yet	unknown—surface	density	of	charge	σ	as72	

	
 		
!
E(!r )= !E0 −k1∇

σ (!r ')
!r − !r'

d2r'
S
"∫∫ , 	 (2.51)	

where	 !!σ (
r ) 	and	 !!


E(r ) 	are	mutually	determined.	This	equation	may	be	written	

solely	in	terms	of	the	electric	field	by	using	the	step	discontinuity	through	the	
body's	surface	eq.	3.35	(read	the	section	Surface	step	discontinuity):	

	
 		
k1σ (
!r )= 1

4π
!
E + −

!
E −( )i ŝ(!r ), where !

E − =0,
	
	 (2.52)	

and	 !!ŝ(
r ) is	the	unit	vector	normal	to	the	ellipsoid's	surface	at	point	 !r 	(see	eq.	

A7.8).	Therefore	

	
 		

!
E(!r )= !E0 − 1

4π ∇
!
E +(!r ')id2!r '
!r− !r 'S

"∫∫ , 	 (2.53)	

a	system	of	integro-differential	equations	that	fully	determines	the	electric	field.	
The	use	of	the	notation	 !


E + stresses	the	step	discontinuity	through	the	body's	

surface,	crucial	for	the	correct	application	of	the	integral	theorems	of	vector	
calculus.	

Inside	the	body	 		
!
E(!r )=	0,	equation	that	can	be	satisfied	only	if	the	second	term	

of	the	first	member	is	a	constant.	This	requirement	is	satisfied	if	 !

E + is	uniform,	

case	in	which	eq.	3.29	gives	

	
 			

1
4π ∇

!
E + id2!r '
!r− !r 'S

"∫∫ =N i
!
E + =

!
E0 , 	 (2.54)	

where	N	is	the	body's	internal	depolarization	tensor.	This	equation	may	be	used	to	
obtain	 !


E +whenever	N	has	an	inverse,	which	is	true	for	the	case	of	nonvanishing	

																																																								

	
71	 Dekker,	p.	220.	
72	 Reitz,	p.	31.	



Carlos	E.	Solivérez	32	

	

eigenvalues.	If	one	or	two	of	the	eigenvalues	are	zero,	a	reduced	inverse	may	be	
defined	which	solves	the	problem,	the	links	being	given	at	page	60.	

The	external	field	is	then	obtained	as	follows:	

	
 			

!
E int =

!
E0 −N i

!
E + =0, !E + =N −1 i

!
E0 for !r ∈V ,

!
E ext(!r )= !E0 −next(!r )i !E + for !r ∉V .

	 (2.55)	

The	electric	dipole	moment	 !
p 	of	the	ellipsoidal	conductor	is	

	
 		
!p = σ (!r ') !r 'd2r '

S
"∫∫ , 	 (2.56)	

where,	from	eq.	2.52,	the	surface	charge	density	is	

	
 			
σ (!r )=

ε0
λ
ŝ(!r )i !E + =

ε0
λ
ŝ(!r )iN −1 i

!
E0. 	 (2.57)	

and	 !!ŝ(
r ) 	is	the	outgoing	unit	vector	normal	to	the	body's	surface	at	point	 !!r . 	

Therefore	

	
 			
!p =

ε0
λ

!r 'ŝ(!r ')d2r '
S
"∫∫

⎛

⎝⎜
⎞

⎠⎟
iN −1 i

!
E0 =

ε0
λ

!r 'd2!r '
S
"∫∫

⎛

⎝⎜
⎞

⎠⎟
iN −1 i

!
E0. 	 (2.58)	

The	integral	inside	the	parentesis	may	be	evaluated	by	components	using	the	
gradient	theorem	eq.	A3.9,	as	follows:	

	

 			

x̂α xα
α
∑⎛⎝⎜

⎞
⎠⎟
d2!r

S
"∫∫ = x̂α xαd

2!r
S
"∫∫

⎛

⎝⎜
⎞

⎠⎟α
∑ =

x̂α ∇xα( )d3r
V
∫∫∫

⎛

⎝⎜
⎞

⎠⎟α
∑ =V x̂α x̂α

α
∑ =V 1̂.

	 (2.59)	

where	!!1̂	is	the	unit	dyadic,	the	one	that	leaves	unchanged	any	vector	or	dyadic.	
Therefore	

	
 			
!p =

ε0
λ
α e i
!
E0 , where α e =VN

−1 , 	 (2.60)	

!α c 	being	the	polarizability	tensor	of	the	conducting	body.	

Although	it	will	not	be	used	in	this	book	(but	see	problem	Problem	31),	it	should	
be	noticed	that	the	surface	charge	distribution	 !!σ (

r ) 	of	a	conducting	ellipsoid	with	
net	charge	Q	may	be	expressed	—in	the	absence	of	applied	field—	in	terms	of	the	
central	distance	of	that	point	(see	p.	172)	as	follows73:	

																																																								

	
73	 Stratton,	p.	209	eq.	12.	
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σ (!r )= d(!r )

4π abcQ, 	 (2.61)	

expression	that	should	be	compared	with	the	density	induced	by	a	uniform	field,	
eq.	3.32.	From	there	it	follows	that	

	
 		
d(!r )d2r

S
"∫∫ = 4π abc. 	 (2.62)	

In	matrix	representation	one	gets	

	

 			

Eint= E0 −N iE+ =0, E+ =N−1 iE0 for !r ∈V ,
Eext(!r )= E0 −next(!r )iE+ for !r ∉V

p=
ε0
λ

αc iE
0 , where αc =VN

−1.
	 (2.63)	

	
The	value	of	the	dipole	moment	is	the	same	obtained	with	the	polarization	model	
eq.	6.29.	
Except	for	the	vanishing	internal	field	,	the	equations	for	a	conducting	ellipsoid	

are	similar	to	those	of	a	dielectric,	where	vector	 corresponds	to	the	uniform	
polarization	 !


P 	(see	eq.	2.10).	This	suggests	that	the	treatment	for	both	types	of	

materiales	may	be	unified	by	the	introduction	of	a	suitable	equivalente	
polarization	for	conductors,	a	topic	discussed	next.	

Equivalent	polarization	

The	behaviour	of	electrons	in	conductors	may	be	considered	as	an	extreme	case	
of	polarization.	In	dielectrics	the	displacement	of	electrons	under	the	effect	of	an	
applied	field	is	strictly	limited	by	the	quantum	energies	binding	them	to	the	nuclei,	
which	renders	it	microscopic,	a	fraction	of	the	atomic	or	molecular	diameter74.	In	
conductors,	as	explained	by	band	theory75,	electrons	can	easily	migrate	from	one	
atom	to	another.	This	may	be	interpreted	as	a	macroscopic	polarization,	that	of	a	
material	with	infinite	electric	susceptibility,	as	will	be	shown	below.	

As	follows	from	equations	2.10,	in	the	region	where	a	polarization	is	uniform	
the	volume	density	of	charge	vanishes	and	its	only	effect	comes	from	the	step	
discontinuity	through	the	body's	surface.	One	may,	then,	define	the	following	
electric	potential	generated	by	an	equivalent	polarization	

 !!

Peq 76:	

																																																								
	

74	 Dekker,	p.	135.	
75	 Dekker,	chapter	10	pp.	238-274.	
76	 Solivérez	(2008),	p.	207.	
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φeq(
!r )= k1

σ eq(
!r ')d2r '
!r − !r ´

⎛

⎝
⎜

⎞

⎠
⎟ = k1

!
Peq(
!r ')id2!r '
!r − !r ´

⎛

⎝
⎜

⎞

⎠
⎟

S
"∫∫ .

S
"∫∫ 	 (2.64)	

This	potential	gives	rise	to	the	electric	field	

	
 		

!
E(!r )= !E0 −k1∇

!
Peqid

2!r '
!r− !r 'S

"∫∫ , 	 (2.65)	

which	coincides	with	eq.	2.53	if	

	
 		

!
E + = 4πk1

!
Peq =

λ
ε0

!
Peq , 	 (2.66)	

where	eq.	A1.4	was	used.	The	case	of	conductors	may	now	be	solved	in	the	same	
fashion	as	that	of	dielectrics	if	

 !!

Peq 	is	given	a	value	such	that	the	internal	field	

vanishes.	This	value,	as	shown	in	Problem	08	at	page	127,	corresponds	to	the	
polarization	induced	in	a	material	with	infinite	electric	susceptibility.	

Superconductors	

If	a	magnetic	induction	 !!

B0
	is	applied	to	a	superconducting	body	—in	an	

appropriate	range	of	temperature	and	field	intensity—	surface	currents	are	
generated	such	that	the	resulting	internal	value	of	 !


B vanishes.	This	Meissner	effect	

and	the	cancellation	of	the	material's	resistivity	are	the	most	notorious	
consequences	of	a	complex	microscopic	phenomena	explained	by	the	BCS	theory	
(initials	of	Bardeen,	Cooper	and	Schrieffer)	and	phenomenologically	described	by	
the	London	model.	The	latter	makes	use	of	currents	confined	within	a	finite	but	
very	small	distance	of	the	body's	surface77.	From	the	macroscopic	point	of	view	
these	currents	may	be	characterized	as	zero	thickness	surface	currents.	The	
depolarization	tensor	method	may	then	be	used	to	macroscopically	characterize	
surface	currents	in	superconducting	ellipsoidal	bodies	in	a	uniform	magnetic	
induction 	

!
B 78.	As	in	the	case	of	conductors,	an	additional	condition,	the	Meissner	

effect,	is	required:	

	
 		
!
B(!r ) = µ0

!
H(!r )+λ ' !M(!r )( ) =0 for !r ∈V . 	 (2.67)	

This	condition	—the	magnetic	analogous	of	the		infinite	electric	susceptibility	of	
conductors—	may	be	interpreted	as	a	perfect	diamagnetism	that	cancels		any	
internal	magnetic	field	 !!


H int . 	Alternately,	one	may	assume	that	 !


H 	and	 !


M vanish	

																																																								

	
77	 Reitz,	pp.	325-328.	
78	 Reitz,	p.	319.	
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inside	the	body	and	—the	resistivity	being	zero—	that	the	Meissner	effect	is	the	
consequence	of	a	perdurable	surface	conduction	current.	Both	models	are	used	to	
analyse	the	Meissner	effect.	Although	they	are	mutually	incompatible,	the	coherent	
use	of	any	of	them	fully	describes	the	effect	from	the	electromagnetic	point	of	
view79.	The	depolarization	tensor	method	will,	therefore,	be	applied	to	these	two	
models,	showing	that	both	lead	to	exactly	the	same	results.	

Magnetization	model	
Equations	2.49	describing	the	behaviour	of	magnetizable	ellipsoidal	bodies	in	a	

uniform	field	field	 !!

B0 	may	be	rewritten	as	follows:	

	

 			

!
B int = µ0

!
H int +λ ' !M( ) , !H int =

!
B0

µ0
−λ 'N i

!
M , for !r ∈V ,

!
Bext(!r )= !B0 − µ0λ 'next(

!r )i !M for !r ∉V .
	 (2.68)	

The	value	of	 !

M may	be	obtained	from	condition	2.67,	

	
 		
!
B int = µ0

!
H int +λ ' !M( ) =0, !M = − 1

λ '
!
H int , 	 (2.69)	

an	equivalente	magnetic	polarization	that	corresponds	to	a	perfect	diamagnetic	
susceptibility,	as	discussed	in	Problem	15.	Replacing	this	value	in	the	second	of	
equs.	2.66,	it	is	obtained	

	
 			

!
H int =

!
B0

µ0
−λ 'N i

!
M = −λ ' !M , !B0 = µ0 λ 'N i

!
M −λ ' !M( ) = µ0λ ' N −1( )i !M. 	 (2.70)	

Rewriting	the	last	member	so	that	the	tensor	is	positive	definite	(has	an	inverse)	

	
 			

!
M = − 1

µ0λ '
1−N( )−1 i

!
B0. 	 (2.71)	

In	this	interpretation	the	Meissner	effect	is	the	consequence	of	a	magnetization	
that	cancels	the	internal	magnetic	field	 !!


H int .This	magnetization	gives	origin	to	a	

magnetic	moment	 !
m 	and	an	external	magnetic	induction,	both	functions	of	the	

applied	field:	

	

 			

!m=V ⋅
!
M = − V

µ0λ '
1−N( )−1 i

!
B0 = 1

µ0λ '
α s i
!
B0 , α s = −V 1−N( )−1

!
Bext(!r )= !B0 − µ0λ 'n(

!r )i !M =
!
B0 +n(!r )i 1−N( )−1 i

!
B0.

	 (2.72)	

where	!α s is	the	body’s	polarizability	tensor	of	the	ellipsoidal	superconductor.	

																																																								

	
79	 Reitz,	chapter	15	pp.	318-333.	
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In	matrix	notation	

	

 				

Bint = µ0 H
int +λ 'M( ) =0, M= − 1

µ0λ '
1−N( )−1 iB0 , for !r ∉V

Bext(!r )=B0 − µ0λ 'next(
!r )iM for !r ∉V ,

where m =V ⋅M= 1
µ0λ '

α s iB
0 , α s = −V 1−N( )−1 .

	 (2.73)	

The	same	result	may	be	derived	from	eq.	2.43,	the	magnetization	surface	
current	discussed	in	Problem	17.	In	Problem	14	our	equations	are	compared	with	
those	given	by	Reitz	(eq.	15-6)	for	the	case	of	a	superconducting	sphere.	

Surface	conduction	current	model	
In	this	model	of	superconductivity	the	Meissner	effect	is	derived	from	a	surface	

conduction	current.	The	difference	between	a	conduction	current	—that	of	electric	
circuits—	from	a	magnetization	current	is	that	the	latter	is	bound	to	single	atoms	
or	molecules,	so	that	no	electrons	are	transferred	between	them80.	Magnetization	
currents	are	as	real	as	conduction	currents,	but	only	the	former	are	feasible	in	
insulating	materials.	

The	total	magnetic	induction	is	the	addition	of	the	applied	one,	 !!

B0 , 	and	that	

generated	by	a	surface	conduction	current		 
!
K 	as	given	by	eq.	2.43:	

	

 		

!
B(!r )= !B0 +

!
BK (
!r ), !BK (

!r )=∇×
!
A(!r ),

!
A(!r )=

µ0λ '
4π

!
KM(
!r ')

!r− !r '
d2r ', !KM(

!r )= !M(!r )× ŝ(!r ).
S
"∫∫

	 (2.74)	

where			 
!
K(!r ) 	is	a	vector	field	such	that	Meissner’s	effect	takes	place.	Its	value	can	be	

found	by	noting	that	any	surface	current	 
!
K 	gives	rise	to	a	magnetic's	induction	step	

discontinuity	through	the	body's	surface81,	

	
 		ŝ(
!r )× !B+(!r )− !B−(!r )( ) = ŝ(!r )× !B+(!r )= µ0λ 'k3

!
K(!r ) as !B−(!r )=0, 	 (2.75)	

where	 !!ŝ(
r ) 	is	the	outgoing	unit	vector	normal	to	the	ellipsoid's	surface	S	at	point	

 !
r 	(see	eq.	A7.8)	and	the	Meissner	condition	 		

!
B−(!r )=0 	has	been	used.	Thus,	taking	

into	account	eqs.	A1.11	and	A7.8,	the	appropiate	surface	current	is	given	by	

																																																								

	
80	 See,	for	instance,	Reitz,	p.	188	Figure	9-2.	
81	 Stratton,	p.	246	eq.	7.	
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!
K(!r )= k3

4πk2
ŝ(!r )× !B+(!r ), where ŝ(!r )=

x
a2
x̂ + y

b2
ŷ + z

c2
ẑ

x2

a4
+ y

2

b4
+ z

2

c4

. 	 (2.76)	

Replacement	of	this	value	in	the	expression	of	the	total	induction	gives	

	
 		

!
B(!r )= !B0 − 1

4π ∇×
!
B+(!r ')×d2!r '
!r− !r 'S

"∫∫ , 	 (2.77)	

the	integro-differential	equation	that	determines	the	magnetic	induction	for	
ellipsoidal	superconductor.	Using	as	an	Ansatz	a	uniform	value	 		

!
B+, 	one	obtains	for	

the	second	term	

	

 		

!
BK (
!r )= − 1

4π ∇×
!
B+×d2!r '
!r− !r 'S

"∫∫ = − 1
4π ∇×

!
B+× d2!r '

!r− !r 'S
"∫∫

⎛

⎝
⎜

⎞

⎠
⎟

= − 1
4π ∇×

!
B+× ∇' 1

!r− !r '
⎛

⎝
⎜

⎞

⎠
⎟ d3r '

V
∫∫∫

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= − 1

4π ∇× ∇ 1
!r− !r '

⎛

⎝
⎜

⎞

⎠
⎟ d3r '

V
∫∫∫ ×

!
B+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
,
	 (2.78)	

where	the	curl	theorem	eq.	A3.9	has	been	used.	The	last	term	—which	for	the	sake	
of	concision	is	written	in	terms	of	 !!f (

r ) 	(eqs.	3.8	and	3.4)—	may	be	transformed	
according	to	the	identity	eq.	A2.9:	

	

 		

!
BK (
!r )=∇× ∇f (!r )× !B+( )

=
!
B+ i∇( )∇f (!r )− ∇f (!r )i∇( ) !B+ +∇f (!r ) ∇ i

!
B+( )− !B+ ∇ i∇f (!r )( )

=
!
B+ i∇( )∇f (!r )− !B+Δf (!r ),

	 (2.79)	

The	expansion	follows	from	the	uniform	character	of	 !

B+ 	and	the	property	eq.	A2.3	

of	the	Laplacian.	Using	eqs.	3.3	and	A3.7	the	last	term	may	be	rewritten	as	

	

 			

!
BK (
!r )= − 1

4π
!
B+ i∇( )∇ d3r '

!r− !r 'V
∫∫∫ + 1

4π
!
B+Δ d3r '

!r− !r 'V
∫∫∫

=
N i
!
B+ −

!
B+ for !r ∈V

next(!r )i !B+ for !r ∉V
⎧
⎨
⎪

⎩⎪
.

	 (2.80)	

Therefore	

	
 				

!
B(!r )= !B0 +

!
BK (
!r )=

!
B0 − 1−N( )i !B++ for !r ∈V
!
B0 +next(!r )i !B+ for !r ∉V

⎧
⎨
⎪

⎩⎪
. 	 (2.81)	

where	 !

B+ is	fully	determined	by	the	Meissner	condition	



Carlos	E.	Solivérez	38	

	

	
 				
!
B0 − 1−N( )i !B++ =0, !B+ = 1−N( )−1 i

!
B0. 	 (2.82)	

As	shown	in	Problem	16	of	page	132,	the	magnetic	moment	generated	by	this	
density	 !


K 	of	surface	conduction	current	is	the	same	as	that	obtained	from	the	

magnetizacion	model	eq.	2.73,	

	 			 	
m = − 1

µ0λ
V
!
B+ = 1

µ0λ '
α s iB

0 , α s = −V 1−N( )−1 .
	 (2.83)	

In	matrix	representation,	

	

 				

Bint =Hint =M=0, B+ = 1−N( )−1 iB0

Bext(!r )=B0 +n(!r )iB+ ,

m = 1
µ0λ '

α s iB
0 , α s = −V 1−N( )−1 ,

!
K(!r )=

k3
4πk2

ŝ(!r )× !B+ , where ŝ(!r )=
x
a2
x̂ + y

b2
ŷ + z

c2
ẑ

x2

a4
+ y

2

b4
+ z

2

c4
⎛

⎝⎜
⎞

⎠⎟

.

	 (2.84)	

Apart	from	the	difference	in	electron’s	localization,	the	only	difference	between	
the	magnetization	and	the	surface	current	models	of	superconductivity	is	the	
asignement	of	the	internal	values	of	 !


H and	 !!


M. 	

Summary	of	integro-differential	equations	

Material	 Equation	 Eq.	

dielectrics	
 		

!
E(!r )= !E0 + 1

4π ∇ ∇ i
χ e i
!
E(!r ')
!r− !r '

d3r '
V
∫∫∫

⎛

⎝
⎜

⎞

⎠
⎟ . 	 2.31	

diamagnets	
paramagnets	

 		

!
H(!r )= !H0 + 1

4π ∇ ∇ i
χm i
!
H(!r ')
!r− !r '

d3r '
V
∫∫∫

⎛

⎝
⎜

⎞

⎠
⎟ , 	 2.46	

conductors	
 		

!
E0 − 1

4π ∇
!
E +(!r ')id2!r '
!r− !r '

=0 for !r ∈V .
S
"∫∫ 	 2.53	

superconductors	
 		

!
B(!r )= !B0 − 1

4π ∇×
!
B+(!r ')×d2!r '
!r− !r 'S

"∫∫ , 	 2.77	

Table	1.	Integro-differential	equations	derived	in	this	chapter.	
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Summary	of	induced	polarization	equations	

																																																		 			E
dep = −N i χe iE

int , 	

Dielectrics:																							

			 

Eint = 1+N i χe( )−1E0 for r∈V ,

P=
ε0
λ
χ e iE

int =
ε0
λ
χ e i 1+N i χe( )−1E0 ,

p=VP=
ε0
λ
αe iE

0 , αe =V χ e i 1+N i χe( )−1 ,
Eext(!r )= E0 − λ

ε0
next(!r )iP for r∉V .

																				(2.33)	

	
	 	 			H

dep = −N i χm iHint 	

Magnetic		materials:	

			 

Hint = 1+N i χm( )−1 iH0 for !r ∈V ,

M= 1
λ 'χm i 1+N i χm( )−1 iH0 ,

m =VM= 1
λ 'αm iH0 , αm =Vχm i 1+N i χm( )−1 ,

Hext(!r )=H0 −λ 'next(!r )iM for !r ∉V .

	 (2.49)	

	
																																									 		Edep = −N iE+ 	

Conductors:																

			 

Eint = E0 −N iE+ =0, E+ =N−1 iE0 for !r ∈V ,

p=
ε0
λ
αc iE

0 , αc =VN
−1 ,

Eext(!r )= E0 −next(!r )iE+ for !r ∉V .

	 (2.63)	

	
Superconductors	(magnetization	model):	

																					

																			

				 

Bint = µ0 H
int +λ 'M( ) =0, M= − 1

µ0λ '
1−N( )−1 iB0 for∉V ,

m =V ⋅M= 1
µ0λ '

α s iB
0 , α s = −V 1-N( )−1 ,

Bext(!r )=B0 − µ0λ 'next(
!r )iM for !r ∉V .

(2.73)	
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Superconductors	(surface	current	model):	

																																									 		B
dep = −(1−N)iB+

	

																																									 	 (2.84)	

General	formulation	of	the	method	
Along	the	sections	of	this	chapter	a	study	was	made	of	the	electromagnetic	

behaviour	of	solid	and	homogeneous	ellipsoidal	bodies	—either	isotropic	or	
anisotropic—	under	an	applied	static	and	uniform	electric	or	magnetic	field.	In	
what	follows	a	general	formulation	of	the	treatment	is	given	in	matrix	
representation,	showing	that	the	ensuing	integro-differential	equations	are	
essentially	identical	in	all	cases	and	may	all	be	solved,	for	the	linear	case,	in	exactly	
the	same	way.	The	main	discussion	is	devoted	to	induced	polarizations	because	
permanent	ones	require	specific	analysis.	

In	all	cases	a	vectorial	field	F	—electric	field	 !!

E , 	magnetic	field	 !!


H ,or	magnetic	

induction	 !

B—	is	derived	from	a	static	applied	one	F0	through	a	vectorial	

magnitude	Q(F)	—electric	polarization,	magnetization	or	step	discontinuity	
through	the	body's	surface—	which	is	a	linear	function	of	F.	Q(F)	fully	describes	
the	state	of	uniform	polarization	of	the	body,	which	may	be	alternately	
characterized	by	some	surface	density	of	charge	or	current.	The	linear	relationship	
between	Q	and	F	is	either	described	by	a	susceptibility	—case	of	the	linear	but	
perphaps	anisotropic	relationship	Q= χ ·F—	or	by	a	condition	of	cancellation	of	the	
internal	field.	Volume	integrals	are	involved	in	most	cases,	but	conductors	and	
superconductors	initially	require	surface	integrals	that	may	be	transformed	into	
volume	ones	by	definining	appropriate	equivalent	polarizations.	The	ensuing	
integro-differential	equations,	valid	over	all	space,	are	separately	solved	for	the	
region	occupied	by	the	body	and	the	external	one.	It	is	then	obtained	

	
 			

Fint = F0 −N iQ(Fint ) for !r ∈V ,
Fext(!r )= F0 −next(!r )iQ(Fint ) for !r ∉V . 	 (2.85)	

The	depolarization	tensor	n,	eq.	3.4,	is	uniform	inside	an	ellipsoidal	body	(where	
its	position	independent	value	is	N).	!!Fint is	therefore	also	uniform	there,	its	value	
being	determined	by	the	first	equation,	as	well	as	that	of	!!Q(F

int ). 	The	value	of	the	
external	field	then	follows	from	the	second	of	eqs.	2.85.	The	geometric	
contribution	is	determined	by	N	and	next,	while	the	material's	properties	are	
characterized	by	Q.	

			 

Bint =Hint =0=M, B+ = 1−N( )−1 iB0 ,

m = 1
µ0λ '

α s iB
0 , α s = −V 1-N( )−1 ,

Bext(!r )=B0 +next(!r )i 1−N( )−1 iB0.
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The	explicit	values	of	!!Fint and	Q	are	obtained	in	different	ways	according	to	the	
material's	properties.	The	first	one	is	the	use	of	the	linear	relationship	

	  		Q(F
int )= χ iFint , 	 (2.86)	

where	χ 	is	a	susceptibility.	In	this	case	

	
 		
Fint = 1+N i χ( )−1 iF0 , Q = χ iFint = χ i 1+N i χ( )−1 iF0. 	 (2.87)	

The	second	case	applies	when	the	internal	field	vanishes	(see	Table	1):	

	  		F
0 −N iQ =0 or (1−N)iQ = F0. 	 (2.88)	

These	relationships	correspond	to	conductors	and	superconductors,	where	the	
susceptibility	obtains	its	largest	value	

	  		Q = −N−1 iF0 or Q = (1−N)−1 iF0. 	 (2.89)	

The	surface	conduction	current	model	of	superconductors	is	the	only	case	for	
which	no	single	Q	tensor	may	be	defined	for	both	the	internal	and	external	field.	
The	origin	of	this	asymmetry	is	the	difference	between	the	constitutive	equations	
for	the	electric	and	the	magnetic	case,	eqs.	2.11	and	2.35.	

In	the	following	table	magnitudes	F	and	Q	are	identified	for	all	cases	discussed,	
as	well	as	the	linear	functions	and	cancellations	required	for	the	validity	of	the	
treatment.	Although	they	do	not	satisfy	eqs.	2.87	to	2.89,	permanent	polarizations	
have	been	included	in	order	to	give	a	full	panoramic	view	of	the	method.	

Material	 F	 Q	 χ 	 Condition	 Eq.	

Ferroelectric	 E	
		
λ
ε0
P 	 	 		P=P(E

int ) 	 2.12	

Dielectric	 E	
		
λ
ε0
P 	 	χe 	  		

P=
ε0
λ
χe iE

int
	 2.33	

Conductor	(surface	charge)	 E	 E+	 	  		E+ =N−1 iE0 	 2.63	

Conductor	(equivalent	P)	 E	 !!!4πk1P 	 χ=∞	 !!P= χeE
int 	 2.65	

Ferromagnetic	 H	 λ'M  !!M=M(Hint )  2.44	

Diamagnetic	and	paramagnetic	 H	 λ'M	 !χm 	  !!M= χm iHint  2.49	

Superconductor	(equivalent	M)	 H	 λ'M !χm = −1 	 !!M= χmH
int 	 2.73	

Superconductor	(surface	
conduction	current)	 B	

 !!
Qint = (N−1 −1)iB+

Qext = −B+
	 Bint=0	 2.84	

Table	2.	Identification	of	the	magnitudes	
in	the	general	field	equations	for	different	kinds	of	materials.	
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Solving	the	integro-differential	equations	by	iteration	

The	dielectric	case,	eq.	2.31,	may	be	taken	as	a	prototype	of	the	integro-
differential	equations	which	determine	the	fields:	

	  		
!
E(!r )= !E0 +O( !E), 	 (2.90)		

where	O	is	a	linear	operator	with	the	following	properties	(see	eq.	3.3):	

	
 		
O
!
F(!r )( ) = k1∇ ∇ i

χ e i
!
F(!r ')
!r− !r '

d3r '
V
∫∫∫

⎛

⎝
⎜

⎞

⎠
⎟ 	 (2.92)	

	

 			

O k ⋅
!
F(!r )( ) = k ⋅O !F(!r )( ) ,

O
!
F(!r )+ !G(!r )( ) =O !F(!r )( )+O !G(!r )( ) ,
O
!
F 0( ) = −4πN i χ e i

!
F 0 if !r ∈V .

	 (2.92)	

The	second	member	of	the	last	equation	holds	true	only	when	 !!

F 0 	is	a	uniform	

vector	throughout	the	body's	volume	V.	

The	solution	for	each	of	these	equations	was	previously	found	by	using	a	
uniform	Ansatz,	as	discussed	in	the	different	sections.	The	resulting	field	coincides,	
in	all	known	cases,	with	that	obtained	by	solving	Laplace's	equation	in	ellipsoidal	
coordinates	by	the	method	of	separation	of	variables82.	The	examples	are	only	
illustrative	and	one	should	prove	that	eq.	2.90 has	a	unique	solution,	as	sketched	
below.	

Let	 		
!
F (1) 	and	 		

!
F (2) 	be	two	different	solutions	of	eq.	2.90,	that	is	

	  		
!
F (1) =

!
F 0 +O( !F (1)), !F (2) = !F 0 +O( !F (2)), that	is !F (1) − !F (2) = !G =O( !G). 	 (2.93)	

By	iteration	it	is	easily	proved	that	

	  !!

G =On( G) for n =1,2,3..., 	 (2.94)	

equation	that	is	satisfied	only	for	 !!

G =0, 	proving	that	the	solution	is	unique.	

The	inhomogeneous	eq.	2.90	may	be	solved	by	iteration,	succesively	replacing	
the	argument	of	the	operator	by	the	full	second	member.	The	first	replacement	
gives	

	

 		

!
E =
!
E0 +O

!
E0 +O

!
E( )( )

=O0 !E0( )+O1 !E0( )+O2 !E( ) = Oα
!
E0( )

α=0

1

∑ +O2 !E( ) ,
	 (2.95)	

																																																								

	
82	 Full	references	to	solutions	are	given	in	the	section	History	of	Chapter	1.	
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where	On	is	the	nth	power	of	O.	

The	second	iteration	gives	

	

 		

!
E = Oα

!
E0( )

α=0

1

∑ +O2 Oα
!
E0( )

α=0

1

∑ +O2 !E( )⎛
⎝⎜

⎞
⎠⎟

= Oα
!
E0( )

α=0

1

∑ + Oα+2 !E0( )
α=0

1

∑ +O4 !E( ) = Oα
!
E0( )

α=0

3

∑ +O4 !E( ).
	 (2.96)	

In	the	infinite	iterations	limit	one	gets	

	

 			

!
E = Oα

!
E0( )

α=0

∞

∑ +O∞
!
E( ) ,

Oα
!
E0( ) = −4k1N i χ e( )α i

!
E0 ,

	 (2.97)	

where	the	operator	series	coincides	with	the	Taylor's	expansion	

	
		
1

1+ x =1− x + x
2 − x3 + x4 + ...= (−x)α

α=0

∞

∑ . 	 (2.98)	

If	the	series	converges	and	the	last	term	of	eq.	2.97	tends	to	0,	it	is	obtained	

	
 			
!
E(!r )= 1+N i χ( )−1 i

!
E0. 	 (2.99)	

The	expression	concides	with	eqs.	2.33	and	2.87,	showing	that	the	iterative	
expansion	converges	and	coincides	with	that	obtained	using	a	uniform	Ansatz.	
Although	theoretical	physicists	frequently	use	series	expansions	of	operators,	the	
method	is	seldom	used	by	engineers.	It	is	easier	to	give	a	rigorous	justification	of	
this	kind	of	expansion	by	using	matrices83.	

The	same	method	may	be	used	to	solve	the	other	three	integro-differential	
equations	in	Table	1.	This	iterative	method,	clumsier	than	the	use	of	a	uniform	
Ansatz,	is	presented	here	only	to	stress	the	mathematical	consistency	of	the	use	of	
integro-differential	equations.	It	might,	perphaps,	be	used	as	an	approximate	
method	for	studying	the	case	of	non	ellipsoidal	bodies	or	equations	2.85	when	Q	is	
not	a	linear	function	of	F.	The	exploration	of	this	subject,	not	made	by	the	the	
author,	is	left	to	the	interested	reader.	
	
	 	

																																																								

	
83	 See,	for	instance:	G.	Goertzel	and	N.	Tralli;	Some	Mathematical	Methods	of	Physics;	McGraw-Hill;	

1960;	chapters	1,	2	and	3,	pp.	7-49.	
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Chapter	3:	
The	depolarization	tensor:	basic	treatment	

Definition	
The	depolarization	tensor		 	n(

!r )arises	from	expressions	like	

	

 		

∇ ∇I(!r )i !F( ) , !F i∇( ) ∇I(!r )( ) ,∇ ∇ i I(!r )!F( )and∇
!
F id2!r '
!r − !r 'S

"∫∫ ,

where	I(!r )= d3r '
!r − !r 'V

∫∫∫ 	and	 !F 	is	uniform	in	V .
	 (3.1)	

The	integration	is	made	over	the	volume	V	of	an	ellipsoidal	body	or	its	closed	
surface	S,	and	 	is	the	position	of	a	field	point	that	may	be	either	inside	or	outside	
the	body.	 is	a	uniform	vector	inside	the	region	of	integration	—the	body’s	
volume,	including	its	interior	surface—	that	may	be	an	electric	or	magnetic	field	or	
a	polarization.	Table	1	gives	the	list	of	the	integro-differential	equations	discussed	
in	this	book	where	such	expressions	arise.	
Only	the	first	two	expressions	will	be	analyzed	next	as	the	third	is	very	similar.	

The	case	where	n	is	derived	from	a	surface	integral	is	discussed	at	section	n	as	a	
surface	integral.	The	proof	is	easier	to	follow	if	one	writes	 and	∇	in	terms	of	
components	and	unit	vectors,	as	follows:	

	 	 (3.2)	

Then	

	

 		

∇ ∇I(!r )i !F( ) = x̂α
∂

∂xα
x̂β

∂I(!r )
∂xββ

∑ i x̂γ Fγ
γ
∑⎛

⎝⎜
⎞

⎠⎟α
∑

= x̂α
∂

∂xα
x̂β i x̂γ( )∂I(

!r )
∂xβ

Fγ
β ,γ
∑⎛

⎝⎜
⎞

⎠⎟α
∑ = x̂α

∂
∂xα

δβγ

∂I(!r )
∂xβ

Fγ
β ,γ
∑⎛

⎝⎜
⎞

⎠⎟α
∑

= x̂α
∂

∂xα

∂I(!r )
∂xβ

Fβ
β
∑⎛

⎝⎜
⎞

⎠⎟
= x̂α

∂2I(!r )
∂xα ∂xβ

Fβ
α ,β
∑ .

α
∑

	 (3.3)	

	 
!r

 !

F

 !

F

		 
∇ = x̂β

∂
∂xββ

∑ , !F = x̂γ Fγ
γ
∑ , where x̂β i x̂γ =δβγ .
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One	may	now	define	the	components	of	the	rank	two	depolarization	tensor	

	
 		
nαβ(
!r )= − 1

4π
∂2 I(!r )
∂xα ∂xβ

= − 1
4π

∂2

∂xα ∂xβ

d3r '
!r − !r 'V

∫∫∫ , 	 (3.4)	

that	in	dyadic	representation	(see	Appendix	6)	may	be	written	

	
 			
n(!r )= x̂αnαβ(

!r )x̂β
α ,β
∑ . 	 (3.5)		

For	instance	

	

 			

!
F i∇( )∇I(!r )= Fα

∂
∂xαα

∑⎛
⎝⎜

⎞

⎠⎟
∂I(!r )
∂xβ

x̂β
β
∑ = Fα

∂2I(!r )
∂xα ∂xβ

x̂β
α ,β
∑

= −4π !F i x̂αn(
!r )αβ x̂β = −

α ,β
∑ 4πn(!r )i !F ,

	 (3.6)	

as	the	depolarization	tensor	is	symmetric	(see	eq.	3.12).	

	Therefore,	

	

 			

!
F i∇( )∇I(!r )=∇ ∇ i I(!r )!F( ) =∇ ∇I(!r )i !F( ) = −∇

!
F id2!r '
!r − !r 'S

"∫∫
= −4πn(!r )i !F , where n(!r )= x̂αnαβ x̂β

α ,β
∑ .

	 (3.7)	

The	calculation	of	the	depolarization	tensor	n	is	therefore	reduced	to	the	
calculation	of	the	integral			 I(

!r ) 	eq.	3.3	for	diferent	kinds	of	ellipsoidal	bodies.	For	a	
solid	ellipsoidal	body	this	integral	is,	apart	from	a	constant	factor,	either	the	
potential	for	a	uniformly	charged	one,	or	the	gravitational	potential	for	a	constant	
mass	density.	In	this	chapter	the	first	potential	is	used,	as	it	is	more	familiar	to	
students	of	engineering,	and	the	second	potential	—the	less	familiar	one	with	
more	complex	derivation—	is	used	in	the	following	chapter	to	derive	expressions	
for	n.	
It	is	convenient	to	define	an	auxiliary	function			 f (

!r ) 	such	that	eq.	3.4	reduces	to	

	
 		
nαβ(
!r )= ∂2 f (!r )

∂xα ∂xβ
, where f (!r )= − 1

4π
d!r '
!r− !r '

= − φ(!r )
4πkσV

∫∫∫ . 	 (3.8)	

In	the	last	term	φ		is	a	gravitational	or	electrostatic	potential,	σ		the	constant	mass	
or	charge	density	and	k	the	gravitational	or	electrostatic	constant	determined	by	
the	choice	of	system	of	units.	That	is,	they	are	the	factors	such	that	
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1
kσ

φ(!r )= d3r '
!r− !r 'V

∫∫∫ 	 (3.9)	

Tensor			 	n(
!r ) 	is	uniform	inside	ellipsoidal	bodies,	where	it	was	originally	

defined84.	The	author	of	this	book	was	apparently	the	first	one	to	define	it	outside	
these	bodies	although	restricted	to	the	magnetic	case85.	In	the	literature	of	
magnetism	its	internal	value	is	sometimes	called	demagnetization	tensor	(apart	
from	a	possible	denominator	4π),	its	principal	values	being	the	well	known	
demagnetizing	or	demagnetization	coefficients	or	factors86.	The	tensor	is	
indistinctly	written	here	as	a	dyadic	n	or	a	3x3	matrix	n.	
For	applications	it	is	necessary	to	explicitly	identify	the	regions	inside	and	

outside	the	ellipsoidal	body.	To	that	end	N	(dyadic)	o	N	(matrix)	denote	the	
uniform	internal	depolarization	tensor	and	next( )	o	next( )	the	non-uniform	
external	one	

	
		 	
N = x̂α x̂βNαβ

β
∑

α
∑ for !r ∈V , next(!r )= x̂α x̂βnαβ(

!r )
β
∑

α
∑ for !r ∉V . 	 (3.10)	

	

 			

N =

Nxx Nxy Nxz

Nxy N yy N yz

Nxz N yz Nzz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

for !r ∈V ,

next(!r )=
nxx(
!r ) nxy(

!r ) nxz(
!r )

nxy(
!r ) nyy(

!r ) nyz(
!r )

nxz(
!r ) nyz(

!r ) nzz(
!r )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

for !r ∉V .

	 (3.11)		

The	difference	between	both	regions	is	emphasized	by	explicitly	writing	the	
dependance	on	position	for	the	external	case	and	omitting	it	in	the	internal	case,	as	
for	constants	or	parameters.	

General	properties	of	n	

Symmetric	tensor	

As	the	order	of	derivation	may	be	freely	exchanged87,	n	turns	out	to	be	a	
symmetric	tensor:	
	

 		nαβ(
!r )= nβα (

!r ), 	 (3.12)	

																																																								

	
84	 Landau	and	Lifchitz,	p.	44.	Maxwell,	apparently	the	first	to	introduce	it,	dit	not	identify	its	

tensorial	character.	
85	 Solivérez	(1981).	
86	 Moskowitz	and	Della	Torre,	p.	739.	
87	 MacMillan,	pp.	27-32.	

 !
r  !

r
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property	that	was	previously	used	in	eq.	3.6.	

Trace	

From	eq.	3.4	the	trace	of	n	(sum	of	its	diagonal	elements)	is	

	
 			
Tr n(!r )= nαα

α
∑ (!r )= ∂2 f (!r )

∂x2αα
∑ = Δ f (!r )= − 1

4π ∇ i∇ 1
!r− !r '

d3r ',
V
∫∫∫ 	 (3.13)	

where	Δ 	is	the	Laplacian	operator	eq.	A2.3.	The	value	of	this	operation,	frequently	
used	in	the	theory	of	electromagnetism,	is	an	integrable	singularity	inside	V	and	
vanishes	outside	the	body.	As	the	calculation	is	often	made	in	a	questionable	way,	
in	Appendix	3	(see	eq.	A3.7)	it	is	proved	that88.	

	
 		
Δ d3r '

!r− !r '
=

−4π for !r ∈V
0 for !r ∉V
⎧
⎨
⎩

.
V
∫∫∫ 	 (3.14)	

It	follows	that	

	
			
Tr N =1, Tr next =0. 	 (3.15)		

In	fact,	the	constants	in	eq.	3.8	were	chosen	in	order	to	make	the	trace	of	N	to	be	1.	

Orthogonal	transformations	

The	transformation	properties	of	matrix	n	are	now	analyzed	under	an	
orthogonal	change	(rotations,	reflections,	inversions	and	all	its	combinations)	of	
coordinate	system:	

	

 			

x 'α = Rαβ
β
∑ xβ , r'=

x '
y '
z '

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

Rxx Rxy Rxz
Ryx Ryy Ryz

Rzx Rzy Rzz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

i
x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=R ir. 	 (3.16)	

These	transformations	are	the	basis	of	the	use	of	symmetry	properties	in	order	to	
simplify	the	calculation	of	many	physical	properties	(see	the	section	Symmetries,	
and	Problem	19).	

Such	operations	are	always	represented	by	an	orthogonal	matrix	R,	that	is,		one	
such	that	its	inverse	coincides	with	its	transposed	matrix:	

	
 			R

−1 =R t , R iR t = R t iR =1, where Rαβ
t = Rβα . 	 (3.17)	

																																																								

	
88	 V.	Hnizdo,	Eur.	J.	Phys.	vol.	21,	pp.	L1-L3	(2000)	gives	a	rigurous	but	more	complex	proof.	
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The	inverse	transformation	is	then	

	

 			

r =R−1 ir'=R t ir,
x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

Rxx Ryx Rzx
Rxy Ryy Rzy
Rxz Ryz Rzz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

i
x '
y '
z '

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
, xα = Rβα

β
∑ x 'β . 	 (3.18)	

In	order	to	determine	the	components	of	n	in	the	new	coordinate	system,	one	
should	use	definition	eq.	3.8,		

	
 		
nαβ(
!r )= ∂2 f (!r )

∂xα ∂xβ
, 	 (3.19)	

and	express	the	value	of	the	new	partial	derivatives	in	terms	of	the	original	ones89.	
In	terms	of	the	derivative	operator:	

	
		
∂
∂x 'β

=
∂

∂xα

∂xα
∂x 'βα

∑ = Rβα

∂
∂xα

.
α
∑ 	 (3.20)	

It	is	thus	obtained	for	the	new	matrix	N’	

	
 			
N 'αβ =

∂2 f
∂x 'α ∂x 'β

= Rαγ
γ ,δ
∑ ∂2 f

∂xγ ∂xδ
Rβδ = R iN iR t( )

αβ
or N'=R iN iR t . 	 (3.21)	

where	eq.	3.17	was	used.	

By	using	this	transformation	property	one	may	stablish	relationships	among	
components	of	the	polarization	tensor,	topic	discussed	in	the	following	section.	
If	one	determines	the	eigenvalues	of	n	in	its	principal	coordinate	system,	the	

value	of	n'	in	a	coordinate	system	related	to	the	former	by	eq.	3.21	is	

	

 			

n'=R in iR t

=

Rxx Rxy Rxz
Ryx Ryy Ryz

Rzx Rzy Rzz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

i

nx(
!r ) 0 0
0 ny(

!r ) 0
0 0 nz(

!r )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

i

Rxx Ryx Rzx
Rxy Ryy Rzy
Rxz Ryz Rzz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

. 	 (3.22)	

Symmetries	
The	relationships	among	the	constant	eigenvalues	of	N	determined	by	the	

body's	symetries	—quite	useful	for	applications—can	be	found	by	using	the	
transformation	properties	eq.	3.22.	The	symmetries	of	the	external	depolarization	
tensor	next	are	more	difficult	to	treat	becauses	its	components	usually	are	
cumbersome	functions	of	position.	This	case	is	usually	handled	by	using	
																																																								

	
89	 Santaló,	pp.	299-303.	
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appropiate	curvilinear	coordinate	systems	(see,	for	instance,	the	treatment	of	the	
sphere	in	page	58).	

When	an	orthogonal	transformation	R	is	a	symmetry	of	the	ellipsoidal	body,	the	
value	N'	in	the	transformed	coordinate	system	must	be	equal	to	the	original	one:	

	 		N'=R•N•R
t =N , or R•N =N•R , 	 (3.23)	

From	a	practical	point	of	view	it	is	simpler	to	use	the	conmutation	relationship	
than	the	first	one,	as	is	illustrated	next.	
The	case	of	spheroids	(ellipsoids	of	revolution)	is	discussed	now	as	an	example.	

If	the	axis	of	revolution	is	taken	as	coordinate	axis	z,	the	exchange	of	axes	x	and	y	(a	
reflection	plane)	should	leave	N	unchanged.	Therefore,	for	

	

 			

R =
0 1 0
1 0 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
,R iN =

0 Ny 0
N x 0 0
0 0 Nz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=N iR =

0 N x 0
Ny 0 0
0 0 Nz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

. 	 (3.24)	

It	thus	turns	out	that	Nx	=	Ny	and	no	further	relationships	are	found	using	other	
symmetry	operations.	The	diagonal	expression	of	N	for	spheroids	is	thus	

	

			

Nspheroid =

Ne 0 0
0 Ne 0
0 0 Np

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

	 (3.25)	

Np	being	the	polar	eigenvalue	corresponding	to	the	spheroid's	symmetry	axis,	an	
Ne	that	of	the	two	equal	equatorial	ones.	

In	the	case	of	the	sphere	an	exchange	of	axis	y	and	z	is	also	a	symmetry,	
which	leads	to	the	three	eigenvalues	being	equal,	as	discussed	in	Problem	19.	In	
combination	with	the	trace	rule	eqs.	3.15,	one	then	obtains	

	 Nx	=	Ny	=	Nz	=	N,		Tr	N	=	3N	=	1		and		N	=	1/3.	 (3.26)	

The	sphere	is	the	only	type	of	ellipsoid	where	the	actual	eigenvalues	of	N	may	
be	determined	by	using	only	the	trace	rule	and	symmetry	arguments.		There	are	
only	two	other	cases	where	this	can	be	done	without	finding	primitives	of	
integrals,	but	both	require	the	knowledge	of	the	integral	expressions	of	Nα,	topic	
discussed	in	some	sections	of	this	chapter	and	the	next.	

n	as	a	surface	integral	
The	depolarization	tensor	n	may	be	expressed	as	a	surface	integral	in	cases	

involving	surface	densities	of	charge	or	current.	To	that	end	one	should	take	the	
scalar	product	of	eq.	3.4	with	a	uniform	vector	 	 !!

!
C :



Depolarization	tensor	method	 51	

	

 			

n(!r )i !C = x̂αnαβ(
!r ) x̂β

α ,β
∑ i

!
C = x̂αnαβ(

!r )Cβ
α ,β
∑

= − 1
4π Cβ x̂α

∂
∂xα

∂
∂xβα ,β

∑ d3r '
!r− !r 'V

∫∫∫ = 1
4π ∇ ∇' 1

!r− !r '
⎛

⎝
⎜

⎞

⎠
⎟ d3r '

V
∫∫∫

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
i
!
C

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
.
	 (3.27)	

As	 	(eq.	3.8)	is	a	continuous	function,	the	gradient	theorem	eq.	A3.9	may	be	
used	to	obtain	

	
 		

∇' 1
!r− !r '

⎛

⎝
⎜

⎞

⎠
⎟ d3r '

V
∫∫∫ = d2!r '

!r− !r 'S
"∫∫ . 	 (3.28)	

As	 	is	an	arbitrary	vector,	it	follows	that	

	
 			
n(!r )= 1

4π ∇ d2 !r '
!r − !r 'S
"∫∫ , 	 (3.29)

	

an	expression	previously	given	by	Moskowitz	and	Della	Torre90.	

Surface	step	discontinuity	
The	depolarization	tensor	has	a	step	discontinuity	through	the	body’s	surface,		

whose	characteristics	are	better	understood	by	analizing	a	concrete	case,	here	
taken	to	be	the	electric	one.	As	discussed	next,	it	turns	out	that	in	this	case	the	
discontinuity	is	equivalent	to	a	charge	density.	In	the	magnetic	case	—where	the	
analysis	is	quite	similar—	it	corresponds	to	a	surface	current	density.	In	Problem	
30	the	reader	is	challenged	to	find	the	expression	for	the	surface	discontinuity	
without	using	the	properties	of	electric	or	magnetic	fields.	

Surface	charge	density	

For	a	uniform	electric	polarization	 —whether	it	is	spontaneous,	induced	or	
equivalent—	the	resulting	electric	field	may	always	be	written	as	(see	eq.	2.9)	

	 	

(3.30)

	As	 	(eq.	3.8)	is	a	continuous	function,	the	gradient	theorem	eq.	A3.9	may	be	
used	to	reduce	the	volume	integral	to	the	following	surface	integral	over	S:	

																																																								

	
90	 Moskowitz	and	Della	Torre,	p.	740	eq.	17.	
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3r '
r− r 'V

∫∫∫
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⎝
⎜⎜

⎞

⎠
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i

P.

 !!I(
r )
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	 	 (3.31)	

The	last	integral	expresses	the	potential	created	by	a	surface	charge	density	σP91.	
Using	eq.	A7.8	it	is	obtained	

	 	 (3.32)	

which	is	the	electric	charge	density	created	by	the	step	discontinuity	on	the	body’s	
surface,	including	the	equivalent	polarization	case	in	the	case	of	conductors.	This	
expression,	useful	for	elllipsoidal	conductors,	is	not	given	in	any	of	the	textbooks	
used	for	writing	of	this	book92.	The	validity	of	eq.	3.32	may	be	easily	verified	for	
the	special	case	of	the	sphere	discussed	in	Problem	09.	

Surface	step	discontinuity	

Through	a	material	interphase	with	a	surface	charge	density	σ		of	net	(case	not	
considered	in	this	book)	or	induced	charge	the	component	of	an	electric	field	
parallel	to	the	surface	is	continuous,	but	the	normal	component	is	not.	If	 		ŝ(

!rS ) 	is	
the	unit	vector	normal	to	the	surface	at	point	 	

!rS ,	the	decomposition	of	any	vector	
in	components	parallel	and	normal	to	that	surface	is:	

	  			
!
F =
!
F
"
+
!
F⊥ ,

!
F
"
= ŝ i

!
F( ) ŝ = ŝŝ i !F , !F⊥ = 1− ŝŝ( )i !F , 	 (3.33)	

where	1	is	the	unit	dyadic	of	eq.	A6.4.	

The	continuity	of	the	electric	field	component	tangential	to	the	body’s	surface	is	
then	expressed	in	the	following	way93:	

	  			 1− ŝŝ( )i !E + −
!
E −( ) = !E + −

!
E −( )i 1− ŝŝ( ) =0. 	 (3.34)	

The	discontinuity	of	the	component	normal	to	the	body's	surface	S	is94:		

																																																								
	

91	 Reitz,	p.	31	eq.	2-15.	
92	 Stratton	—the	autor	that	discusses	in	more	detail	the	electromagnetic	properties	of	ellipsoidal	

bodies—gives	only	the	surface	density	for	charged	conductors	in	the	absence	of	an	applied	
field,	see	eq.	12	in	p.	209.	

93	 Reitz,	p.	90.	
94	 Stratton,	p.	188.	

 !!

φP(
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i
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P

= k1
σ P(
r ')d2r '
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 !!
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!
E + −

!
E −( )i ŝ = 4πk1σ . 	 (3.35)	

The	signs	are	chosen	so	that	a	component	is	positive	when	the	vector	points	
outgoing	from	the	positive	side	of	the	surface	(+),	chosen	to	be	the	one	external	to	
the	body.	
For	all	the	cases	discussed	in	the	previous	chapter	—see	eqs.	2.7	and	A1.4—	the	

following	relationship	is	fullfilled,	

	 	 (3.36)	

where	 is	a	point	on	surface	S.	

From	this	identity	and	the	expression	of	 	eq.	3.31,	the	field	's	discontinuity	
through	the	body’s	surface,	the	depolarization	tensor's	step	discontinuity,	may	be	
written	as	
	 	 (3.37)	

For	the	equation	to	be	valid	for	arbitrary	values	of	 	
!
P 	—whether	it	is	a	

spontaneous,	induced	or	equivalent	polarization—	it	should	be	

	  			ŝ(
!r S )ŝ(!r S )i N −next(!r S )( ) = N −next(!r S )( )i ŝ(!r S )ŝ(!r S ). 	 (3.38)	

Any	tensor	T	may	be	decomposed	in	the	following	fashion	

	
 			T = 1+ ŝŝ − ŝŝ( )iT = ŝŝ iT + 1− ŝŝ( )T =T

!
+T⊥ , 	 (3.39)	

in	components	such	that	when	the	scalar	product	with	an	arbitrary	vector	is	taken,	
the	components	parallel	and	normal	to	the	surface	are	respectively	given	by	each	
term.	

From	eqs.	3.34	and	3.35	one	gets	

	  			N −next(!r S )= ŝŝ i N −next(!r S )( )+ 1− ŝŝ( )i N −next(!r S )( ) = ŝŝ , 	 (3.40)	

which	gives	the	value	on	the	body’s	surface	of	the	external	depolarization.	The	
following	matrix	expression	is	thus	obtained,	valid	for	all	types	of	ellipsoids:	

	  			n
ext(!r S )=N − ŝ(!r S )i ŝ(!r S ). 	 (3.41)	

From	eq.	A7.8,	

	

 		

sα (
!r S )sβ(

!r S )=
xSα x

S
β

xS( )2

a4
+
yS( )2
b4

+ zS( )2

c4

. 	 	(3.42)	

At	an	elementary	level	the	expression	may	be	verified	for	all	ellipsoids	where	
the	components	of	the	external	depolarization	tensor	may	be	expressed	in	terms	of	

 !!!

E + −


E − = 4πk1 N −next(r S )( )i P ,

 !
r S

!!ŝ

 !!!ŝ i N −next(r S )( )i P = ŝ i P.
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elementary	functions,	like	the	infinite	cylinder	and	the	sphere	(see	Problem	34).	
Later	on,	it	will	be	verified	for	all	types	of	ellipsoids,	including	the	triaxial	one	(see	
eq.	4.66).	The	formula	provides	a	simple	approximation	to	the	fields	near	the	
surface	of	any	ellipsoid.	This	includes	the	electric	fields	at	sharp	metallic	tips,	a	
topic	where	explicit	formulas	are	rarely	given	(see	Problem	12).	

Calculation	of	n	using	electrostatic	Gauss’s	Law	
This	section	is	devoted	to	the	calculation	of	n	from	eq.	3.8,	which	requires	the	

expression	of	the	auxiliary	integral 		f (
!r ) .	As	stated	there,	apart	from	a	

proportionality	constant	f	coincides	with	the	electric	potential	φ	generated	by	
volume	V	when	charged	with	uniform	density	ρ95:	

	
 		
φ(!r )= k1ρ

d3r '
!r− !r '

=
V
∫∫∫ −4πk1ρ f (

!r ), f (!r )= − φ(!r )
4πk1ρ

. 	 (3.43)	

This	expression	is	useful	for	the	shapes	where	the	potential	may	be	derived	by	
using	electrostatic	Gauss’	law,	high	symmetry	cases	which	are	frequently	discussed	
in	first	university	courses	on	electricity	and	magnetism	for	physicist	and	
engineers.	In	order	of	increasing	difficulty	these	shapes	are:	

• a	=	b	≫	c:	constant	thickness	sheet	of	infinite	extension;	
• a	≫	b	=	c:	right	circular	cylinder	of	infinite	length;	
• a	=	b	=	c:	sphere.	

Sheet	of	constant	thickness	and	infinite	extension	

The	depolarization	tensor	of	a	sheet	of	constant	
thickness	e	=	2c	and	infinite	extension,	as	shown	in	
the	figure,	is	calculated	here.	A	cartesian	coordinate	
system	is	used	such	that	its	z	axis	is	perpendicular	to	
the	surface	of		the	sheet,	with	origin	on	its	middle	
plane.	
The	simplest	way	to	solve	the	equivalent	

electrostatic	problem	of	eq.	3.43	is	to	evaluate	the	
	

Figure	3.	Infinite	sheet.	

electric	field	by	application	of	electrostatic	Gauss's	Law,	obtaining	then	the	
potential	by	integration.	This	may	be	easily	done	due	to	the	high	symmetry	of	the	
problem.	As	the	sheet	is	invariant	under	arbitrary	translations	along	the	axes	x,	y,	
the	field	may	only	be	a	function	of	z.	As	it	is	also	invariant	under	arbitrary	
rotations	around	the	z	axis,	the	field	cannot	have	x	and	y	components.	The	last	
symmetry	of	interest	is	the	reflection	plane	parallel	to	the	sheet's	surfaces	through	
its	middle,	making	the	field	in	one	of	its	sides	the	specular	image	of	that	in	the	
other.	Therefore	

	 	 (3.44)	

																																																								

	
95	 A	similar	expression	applies	for	f		in	the	gravitational	case	discussed	by	Macmillan	and	Kellog,	

where	one	should	take	k1	=	1	and	ρ		to	be	the	density	of	mass.	

 		
!
E(−z)= − !E(z), !E(!r )= E(z)ẑ , E(0)=0.
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Figure	4	shows	the	sheet's	cross	section	in	gray	
and	the	two	closed	surfaces,	S1	and	S2,	used	for	the	
application	of	Gauss’s	Law.	These	gaussian	boxes	are	
right	circular	cylinders	such	that	their	vertical	faces	
are	parallel	to	axis	z	and	the	horizontal	ones,	of	area	
A,	are	normal	to	it.	The	flux	of	the	electric	field	
vanishes	both	on	the	base	(where	 	

!
E 	=	0)	and	on	the	

vertical	face	(where	it	is	normal	to	the	surface).	This	
reduces	the	calculation	to	the	flux	on	the	upper	face,	
where	

	
Figure	4.	Gaussian	boxes	

	used	for	solving	the	infinite	
sheet.	

	

 		

!
E int id

"
S

S1

#∫∫ = 4πk1Q1 , gives E int(z)⋅A= 4πk1ρ ⋅A⋅z , E int(z)= 4πk1ρ ⋅z ,
!
E ext id

"
S

S2

#∫∫ = 4πk1Q2 , gives E ext(z)⋅A= 4πk1ρ ⋅A⋅e, E ext(z)= 4πk1ρ ⋅e.
	 (3.45)	

From	 	and	eq.	3.43	it	is	obtained	

	

 		

φ(z)= cte.−2πk1ρ ⋅z2 for !r ∈V
cte.−2πk1ρ ⋅e ⋅z for !r ∉V
⎧
⎨
⎪

⎩⎪
, f (z)=

1
2z

2 for !r ∈V ,
1
2e ⋅z for !r ∉V

⎧

⎨
⎪⎪

⎩
⎪
⎪

,. 	 (3.46)	

From	the	definition	eq.	3.4	it	follows	that		

for	the	sheet	

		

		N =
0 0 0
0 0 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
, next =

0 0 0
0 0 0
0 0 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
. 	 (3.47)	

Due	to	the	inexistence	of	N-1	one	should	next	analyze	the	relationship	of	the	
fields	thus	obtained	with	those	of	the	depolarization	tensor	method.	Equations	
2.33	and	2.49	show	that	the	relevant	matrix	for	the	case	of	induced	electric	and	
magnetic	polarizations	is	

	

		

1+ χN( )−1 ==
1 0 0
0 1 0
0 0 1
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⎞
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⎟

⎡

⎣

⎢
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⎤

⎦

⎥
⎥
⎥
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⎛

⎝
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⎜
⎜

⎞

⎠

⎟
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−1
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⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
,

	 (3.48)	

where	it	is	clear	no	problem	arises.	This	does	not	happen	for	the	case	of	
conductors	and	superconductors,	eqs.	2.63,	2.73	and	2.84.	In	these	cases	one	

!!
E(z)= − dφ(z)

dz
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should	go	back	to	the	original	equation	that	was	solved	by	the	inversion	of	a	
matrix.	For	instance,	the	first	of	eqs.	2.63	leads	to	the	equation	

	
 			N iE+ = E0 , that	is E+

x =0,E+
y =0,E+

z =E0z , 	 (3.49)	

where	E0	is	the	aplied	electric	field	and	E+	is	the	total	electric	field	on	the	external	
surface	of	the	sheet	due	to	the	surface	density	of	charge96	induced	by	E0.	The	
physical	meaning	of	the	previous	equation	is	that,	as	regards	the	“polarization”	
effects	—those	that	have	origin	in	the	redistribution	of	surface	charges—	the	only	
component	of	the	applied	field	to	be	taken	into	account	is	the	one	normal	to	the	
sheet,	the	z	component.	In	the	reduced	space	of		the	z	axis,	matrix	N	has	what	may	
be	called	a	“reduced”	inverse	(this	is	better	seen	in	the	two-dimensional	case	
discussed	at	the	end	of	next	section).	

Right	circular	cylinder	of	infinite	length	
As	in	the	previous	problem,	the	value	of	n	will	be	

derived	from	the	calculation	of	the	electric	field	of	a	
uniformly	charged	right	circular	cylinder	of	radius	b,	
infinite	length	and	uniform	electric	charge	density	ρ.	By	
symmetry,	the	electric	field	lies	on	the	plane	normal	to	
the	cylinder	axis,	is	angle-independent	and	radial,	that	is,	
normal	to	the	cylinder’s	surface.	Its	value,	easily	obtained	
using	the	electrostatic		Gauss’s	Law	is97:	

	
Figure	5.	Infinitely	

long	circular	cylinder.	

	

		
Er = −

∂φ(r)
∂r

=
2πk1ρ ⋅r for r ≤b

2πk1ρ
a2

r
for r ≥b

⎧
⎨
⎪

⎩⎪
, r = y2 + z2 . 	 (3.50)	

Integrating	the	field	with	respect	to	r	it	is	obtained	

	
		
φ(r)= constant −πk1ρ ⋅r2 for r ≤b

constant −2πk1ρ ⋅b2 lnr for r ≥b

⎧
⎨
⎪

⎩⎪
, 	 (3.51)	

	

 		

f (!r )=
1
4( y

2 + z2) for !r ∈V
1
4b

2 ln( y2 + z2) for !r ∉V

⎧

⎨
⎪⎪

⎩
⎪
⎪

. 	 (3.52)

	
From	eq.	3.4	it	follows	that	

																																																								

	
96	 The	reader	should	read	in	full	detail	the	section	Conductors	in	this	book.	
97	 A.	Halpern,	3000	Solved	Problems	in	Physics,	Schaum's	Outline	Series,	McGraw-Hill,	p.	406	

problem	25.70;	1988.	
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∂2 f
∂x2

=0, ∂2 f
∂ y2

= 12 ,
∂2 f
∂z2

= 12 ,
∂2 f

∂xα ∂xβ
=0 for xα ≠ xβ , r∈V , 	 (3.53)	

	

		

N =
0 0 0
0 1/2 0
0 0 1/2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
, 	 (3.54)	

which	satisfies	the	trace	rule	eq.	3.15.	This	value	of	N	coincides,	apart	from	the	
exchange	of	axis,	with	that	obtained	by	symmetry	arguments	(see	eqs.	3.25	and	
3.73).	

Outside	the	body	

	

		

∂2 f
∂x∂xα

= ∂2 f
∂xα ∂x

=0 if xα = y ,z ,

∂2 f
∂ y2

= − b
2

2
y2 − z2

r4
, ∂2 f

∂z2
= b

2

2
y2 − z2

r4
,

∂2 f
∂ y∂z

= ∂2 f
∂z∂ y

= − b
2

2
2yz
r4

.

	 (3.55)	

In	a	spherical	coordinate	system	where	

	 	x	=	r	·	cos	ϕ	·	sinθ,		y	=	r	·	sinϕ	·	sinθ,		z	=	r	·	cosθ,		 (3.56)	

	 		δ = x2 + y2 = r·	sinθ , 	

and	R	is	the	cylinders’s	radius,	the	matrix	expressions	for	n	are	

Cylinder	

		

N =
1/2 0 0
0 1/2 0
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	 (3.57)	

	

 			

next(!r )= R2

2δ 2

−cos2ϕ −sin2ϕ 0
−sin2ϕ cos2ϕ 0
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⎪
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⎬
⎪

⎭
⎪

	 (3.58)	

As	there	are	no	components	along	the	cylinder’s	z	axis,	the	problem	may	be	
solved	in	the	reduced	space	of	the	x,	y	components	where	the	reduced	inverse	N’	is		

	
		
N'= 1

2
1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
, N'−1 =2 1 0

0 1
⎛

⎝⎜
⎞

⎠⎟
, 	 (3.59)	
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using	which	the	general	matrix	equations	may	be	applied	for	all	electrostatic	and	
magnetostatic	cases.	

Sphere	
The	sphere	is	the	last	body	for	which	the	

electrostatic	potential	φ		may	be	obtained	from	the	
electrostatic	Gauss's	Law.	Let	R	be	the	radius	of	the	
sphere,	Q	the	total	uniformly	distributed	charge	and	
take	its	center	as	the	origin	of	coordinates.	From	the	
symmetry	of	the	body	the	electric	field	has	to	be	radial,	

	the	following	function	of	the	distance	r	to	
the	center	of	the	sphere.	

	
Figura	6.	Sphere.	

	

		

E(r)=
k1Q
R3
r for r ≤R,

k1Q
r2

for r >R.

⎧

⎨
⎪⎪

⎩
⎪
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	 (3.60)	

As	

	
 		
!
E(!r )= E(r)r̂ = −∇φ(r)= − d

dr
φ(r), then φ(r)= − E(r ')dr '

∞

r

∫ . 	 (3.61)	

	Therefore	

	

 		

φ(!r )=
cte.−k1

Q
2R3 r

2 for !r ∈V

cte.+k1
Q
r

for !r ∉V

⎧

⎨
⎪⎪

⎩
⎪
⎪

, 	 	(3.62)		

As	

	 	 (3.63)	

it	follows	that	the	auxiliary	function	f	,	eq.	3.8,	is	given	by	

	

 		

f (!r )=
1
6r

2 for r ≤R

− R
3

3
1
r
for R ≤ r

⎧

⎨
⎪⎪

⎩
⎪
⎪

. 	 (3.64)	

From	eq.	3.4	and	

	 	 (3.65)	

where	δαβ	is	Kronecker's	delta,	one	gets	the	following	expression.	98	

																																																								
	

98	 Solivérez	(2008),	p.	205	eq.	12.	

 !!
!
E(!r )= E(r) !r ,

!!
V = 4π3 R3 , ρ = Q

V
= 3Q
4πR3 , f (r)= − 1

4πk1ρ
φ(r)= − R3

3k1Q
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!!
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	 (3.66)	

In	dyadic	notation	

	
 			
N = 131, n

ext(!r )= − R
3

3
3!r!r −(!r i

!r )1
r5

= − V4π
3!r!r −(!r i

!r )1
r5

, 	 (3.67)	

where	V	is	the	volume	of	the	sphere.	A	general	property	of	the	depolarization	
tensor	for	finite	bodies	is	here	put	into	evidence:	its	internal	value	is	independent	
of	the	body's	volume	V,	while	its	external	value	is	proportional	to	V.	Notice	that	
Tr	N	=	1	and	Tr	next	=	0,	as	previously	discussed.	Matrix	N	coincides	with	that	
obtained	in	a	simpler	way	from	symmetry	arguments	(see	Problem	19).	

Other	properties	of	the	internal	depolarization	tensor	N	

Integral	expressions	of	the	eigenvalues	of	N	

The	proof	of	many	important	properties	of		the	internal	depolarization	tensor	N	
may	be	easily	derived	from	its	general	integral	expressions.	It	is	therefore	
convenient	to	use	the	values	given	by	eqs.	4.6,	as	reproduced	next.	Nα	and	Nα (0)	
are	different	notations	for	the	same	integral.	The	values	of	Nα (κ)	with	κ	≠	0	are	
necessary	for	the	calculation	of	the	depolarization	tensor	external	to	the	body.	

	

		
Na =

abc
2

ds

a2 + s( )3/2 b2 + s( ) c2 + s( )0

∞

∫ , where	a≥b≥ c , 	 (3.68)	

	

		
Nb =

abc
2

ds

b2 + s( )3/2 a2 + s( ) c2 + s( )0

∞

∫ ,where	a≥b≥ c , 	 (3.69)	

	

		
Nc =

abc
2

ds

c2 + s( )3/2 a2 + s( ) b2 + s( )0

∞

∫ ,where	a≥b≥ c. 	 (3.70)	
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The	integrals	are	also	highly	symmetric	as	regards	the	semiaxes	and	it	may	be	
easily	proved	that	

	 Nb(a,b,c)	=	Na(b,a,c),	Nc(a,b,c)	=	Na(c,b,a).	 (3.71)	

That	is,	one	single	function	gives	the	three	eigenvalues,	as	long	as	they	are	sorted	
in	such	a	way	that	the	condition		a	≥	b	≥	c	is	fulfilled.	As	they	are	very	efficient	
methods	for	the	numerical	evaluation	of	integrals99,	eqs.	3.71	may	simplify	the	
numeral	calculation	of	eigenvalues	that	are	necessary	for	the	general	triaxial	
elipsoids.	

As	the	three	integrals	differ	only	in	the	single	factor	1/(dα2	+	s)	one	might	
assume	that	

		
		
if a≥b≥ c , then 1

a2 + s
≤ 1
b2 + s

≤ 1
c2 + s

and Na ≤Nb ≤Nc . 	 (3.72)	

The	conclusion	is	true,	but	the	proof	is	flawed.	This	may	be	seen	by	using	a	similar	
argument	to	prove	that	for	constant	a	and	c,	the	eigenvalues	of	N	are	a	decreasing	
function	of	b.	As	seen	from	Figure	14,	Figure	15	and	Figure	16,	this	is	true	for	Nb,	
but	not	for	Na	and	Nc.	The	origin	of	the	paradox	is	a	combination	of	the	symmetry	
properties	eq.	3.71	and	the	constraints	imposed	on	the	relative	values	of	a,	b	and	c	
originated	in	the	method	used	to	derive	the	expressions	of	Nα	in	terms	of	elliptic	
functions.	In	this	case	the	symmetries	eqs.	3.71	are	lost	and	each	eigenvalue	is	
given	by	a	completely	different	function	(see	eqs.	4.9).	

Diagonalization	and	inversion	
As	seen	from	eq.	4.6	the	internal	depolarization	tensor	N	is	diagonal	in	the	

ellipsoid's	principal	system	of	coordinates,	the	one	coinciding	with	its	semiaxes.		
Furthermore,	from	the	integrals	that	define	its	eigenvalues	(the	diagonal	matrix	
elements	or	tensor's	principal	values)	it	is	easily	proved	that	they	are	never	
negative	and	do	not	vanish	for	finite	values	of	the	semiaxes.	Therefore,	the	N	
matrix	of	all	finite	ellipsoids	is	positive	definite	and	always	has	an	inverse100	N-1.	
The	only	exception	are	the	cases	when	one	or	two	semiaxes	become	infinite,	where	
the	corresponding	eigenvalues	vanish,	as	discussed	next.	The	calculation	of	the	
internal	and	external	fields	for	these	cases	is	discussed	at	sections	Sheet	of	constant	
thickness	and	infinite	extension	and	Right	circular	cylinder	of	infinite	length.	

Infinite	semiaxes	and	the	inverse	of	N	

The	constant	thickness	sheet	of	infinite	extension	and	the	infinitely	long	right	
circular	cylinder	are	two	cases	often	discussed	in	introductory	courses	of	
electromagnetism	because	of	the	simplicity	of	their	treatment.	They	are	not	real	
bodies,	but	they	provide	useful	illustration	of	important	properties	and	the	fields	
thus	obtained	are	good	aproximationes	to	those	of	a	very	long	prolate	spheirod	
near	the	equator	(for	the	cylinder’s	case)	and		to	a	very	short	oblate	spheroid	near	

																																																								

	
99	 Press,	W.	H.	&	Teukolsky,	S.	A.	&	Vetterling,	W,	T,	&	Flannery,	B.	P.;	Numerical	recipes	in	C;	

Cambridge	University	Press	(United	Kingdom);	1992.	
100	 Goertzel	and	Tralli,	p.	16.	
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the	axis	(for	the	sheet’s	case).	Both	cases	can	be	taken	to	be	the	limits	of	spheroidal	
ellipsoids	where	one	axis	(the	symmetry	one)	or	two	axis	(the	equatorial	ones)	are	
infinitely	long.	A	third	case	will	also	be	considered,	the	infinite	right	elliptic	
cylinder,	but	only	after	the	triaxial	ellipsoids	is	discussed.	

When	semiaxis	a	becomes	very	large,	the	following	limit	is	obtained	for	its	
integral	definition	eq.	3.68:	

	

		

Na(κ )= lima→∞

abc
2

ds

a2 + s( ) a2 + s( ) b2 + s( ) c2 + s( )κ

∞

∫

= lim
a→∞

bc
2

ds

a4/3 + s
a2/3

⎛
⎝⎜

⎞
⎠⎟

3/2

b2 + s( ) c2 + s( )κ

∞

∫ =0.
	 (3.73)	

As	the	same	thing	happens	for	all	coordinate	axes,	when	the	value	of	semiaxis	α	→
,	the	corresponding	principal	value	Nα	goes	to	0.	One	should	then	check	if	the	

other	two	principal	values,	eqs.	3.69	and	3.70,	remain	finite,	which	in	our	example	
are	Nb	and	Nc.	For	Nb,	

	

		

Nb(κ )= lima→∞

abc
2

ds

b2 + s( ) a2 + s( ) b2 + s( ) c2 + s( )κ

∞

∫

= lim
a→∞

bc
2

ds

b2 + s( )3/2 1+ s
a2

⎛
⎝⎜

⎞
⎠⎟
c2 + s( )κ

∞

∫ = bc2
ds

c2 + s b2 + s( )3/2κ

∞

∫ ,
	 (3.74)	

where	the	integrand	is	finite	and	non-vanishing.	

The	same	happens	for	Nc	(λ),	

	

		

Nc(κ )= lima→∞

abc
2

ds

c2 + s( ) a2 + s( ) b2 + s( ) c2 + s( )κ

∞

∫

= lim
a→∞

bc
2

ds

c2 + s( )3/2 1+ s
a2

⎛
⎝⎜

⎞
⎠⎟
b2 + s( )κ

∞

∫ = bc2
ds

b2 + s c2 + s( )3/2κ

∞

∫ .
	 (3.75)	

The	last	two	cases	correspond	to	the	same	type	of	integral,	that	will	be	solved	
when	discussing		the	infinitely	long	elliptic	cylinder	in	next	chapter.	

The	case	b	=	c	corresponds	to	the	infinitely	long	right	circular	cylinder,	where	

	

		
Nb(κ )=Nc(κ )=

b2

2
ds

b2 + s( )2κ
∫ = − b2

2 b2 + s( )
κ

∞

= 1
2

b2

b2 +κ( ) . 	 (3.76)	

∞
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The	next	case	for	analysis	is	the	sheet	of	constant	thickness	and	infinite	
extension.	To	that	end	consider	an	ellipsoid	with	finite	semiaxis	c,	letting	the	other	
two	grow	without	limit.	In	order	to	preserve	their	ratio	their	values	are	written	as	
ka	and	kb,	and	the	limit	k→∞	is	taken.	Then	

	

		

lim
k→∞

Nc(κ )= limk→∞

ka( ) kb( )c
2

ds

c2 + s( )3/2 k2a2 + s( ) k2b2 + s( )κ

∞

∫

= lim
k→∞

abc
2

ds

c2 + s( )3/2 a2 + s
k2

⎛
⎝⎜

⎞
⎠⎟
b2 + s

k2
⎛
⎝⎜

⎞
⎠⎟

κ

∞

∫ = c2
ds

c2 + s( )3/2κ

∞

∫

= − c

c2 + s κ

∞

= c

c2 +κ
.

	 (3.77)	

The	infinite	limit	for	the	integral	expressions	for	Nx(κ)	and	Ny(κ)		is	easily	
proved	to	vanish.	The	same	result	is	obtained	at	page	54	by	using	electrostatic	
Gauss’s	Law,	where	the	field	outside	the	body	is	also	calculated	showing	it	to	be	
independent	of	the	ratio	a/b,	so	that	there	is	no	elliptic	sheet	of	infinite	extensión	
(although	there	is	a	right	elliptic	cylinder	of	infinite	length,	see	eqs.	4.89	and	4.89).	
The	result	is	confirmed	by	taking	appropiate	limits	in	the	cases	of	the	elliptic	
cylinder	eq.	4.16	and	the	oblate	spheroid	eq.	4.29	with	aspect	ratio	γ		=	0.	
In	all	these	cases	the	inverse	of	N	does	not	exist	and	one	should	solve	the	

equations	that	relate	the	components	Nα,	the	applied	field	and	the	total	field	inside	
the	body,	as	illustrated	for	the	sheet	of	constant	thickness	and	infinite	extension	at	
page	55	and	for	the	right	circular	cylinder	of	infinite	length	al	page	57.	

N	is	invariant	for	similar	ellipsoids		

An	important	property	of	the	internal	depolarization	tensor	N	is	its	
independence	of	the	body’s	volume,	of	the	problem's	scale.	This	is	not	evident	from	
a	mere	inspection	of	eq.	4.6.	To	prove	the	assertion	consider	a	similar	ellipsoid,	one	
whose	semiaxes	a’,	b’,	c’	differ	from	the	original	ones	by	a	finite	constant	factor	k:	
a'	=	k·a,	b'	=	k·b,	c'	=	k·c.	The	principal	values	of	this	similar	ellipsoid	turn	out	to	be	

	

		
Nα (κ |ka,kb,kc)=

k3abc
2

ds

k2d2α + s( )2 k2a2 + s( ) k2a2 + s( ) k2a2 + s( )
,

κ

∞

∫ 	 (3.78)	

apparently	different.	A	change	of	integration	variable	s	=	k2s'	does	not	modify	the	
limits	of	integration	when	κ	=	0	and	gives	the	identity	
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N(0|ka,kb,kc)= k
3abc
2

k2ds '
k2d2α +k

2s '( )2 k2a2 +k2s '( ) k2a2 +k2s '( ) k2a2 +k2s '( )0

∞

∫

= abc2
ds '

d2α + s '( )2 a2 + s '( ) a2 + s '( ) a2 + s '( )0

∞

∫ =N(0|a,b,c)
	 (3.79)	

	

		

N 'α =
k3abc
2

k2ds

k2nα
2 +k2s '( ) k2a2 +k2s '( ) k2b2 +k2s '( ) k2c2 +k2s '( )0

∞

∫

= abc2
ds

nα
2 + s '( ) a2 + s '( ) b2 + s '( ) c2 + s '( )0

∞

∫ =Nα .
	 	

It	follows	that	

	 Nα(0|a,b,c)	=	Nα(0|k·a,k·b,k·c),	where	α	=	x,	y,	z.	 (3.80)	

It	should	be	stressed	that	the	property	does	not	apply	for	the	integrals	with	
κ  ≠ 0.	

Therefore,	the	internal	depolarization	tensors	of	similar	ellipsoids	are	equal.	
This	is	of	importance	for	the	discussion	of	cavities	in	ellipsoidal	bodies	made	in	
page	116.	It	should	be	stressed	here	that	the	external	depolarization	tensor	next	
does	not	have	this	property;	in	fact,	its	value	is	proportional	to	the	body’s	volume	
V.	

N(0)	is	determined	by	aspect	ratios		
The	principal	values	of	N(0)	are	not	a	function	of	the	three	semiaxes,	but	of	the	

ratios	of	two	of	them	to	a	third,	their	aspect	ratios.	This	is	a	corollary	of	the	
previous	property	when	factor	k	in	eqs.	3.80	is	taken	to	be	the	inverse	of		the	
largest	semiaxis,	in	this	book	taken	to	be	a.	

	

		

Nα (0)= 1
2
a
a
b
a
c
a

ds

dα /a( )2 + s⎛
⎝

⎞
⎠ a/a( )2 + s⎛

⎝
⎞
⎠ b/a( )2 + s⎛
⎝

⎞
⎠ c /a( )2 + s⎛
⎝

⎞
⎠

0

∞

∫

= 1
2βγ

ds

δα
2 + s( ) 1+ s( ) β 2 + s( ) γ 2 + s( )0

∞

∫ ,

where α = x , y ,z , β = b
a
,γ = c

a
, δ x =1, δ y = β , δ z = γ .

	

(3.82)	

This	is	the	convention	used	in	the	tabulations	of	Nα(0)	for	the	triaxial	ellipsoid,	the	
only	type	where	the	eigenvalues	cannot	be	expressed	in	terms	of	elementary	
functions.	
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For	further	applications	it	is	convenient	to	identify	the	values	of	aspect	ratios β	
and	γ		for	different	categories	of	ellipsoids,	as	shown	in	Table	3,	where	

	 a	≥	b	≧	c,			1	≥	β	≧	γ . (3.83)	

a	 b	 c	 β  γ  Type	of	ellipsoid	

∞	 ∞	 c	 −101	 0	 sheet	of	constant	thickness	and	infinite	extension	(see	p.	54)	

∞	 b	 b	 0	 0	 right	circular	cylinder	of	infinite	length	(see	p.	56)	

∞	 b	 c	<	b	 0	 0		 right	elliptic	cylinder	of	infinite	length	(see	p.	58)	

a	 a	 c	<	a	 1	 c/a	 oblate	spheroid	(see	p.	69)	

a	 b	<	a		 b	 b/a	 b/a	 prolate	spheroid	(see	p.	74)	

a	 a	 a	 1	 1	 Sphere	(see	p.	58)	

a	 b	<	a	 c	<	b	 b/a	 c/a	 triaxial	ellipsoid	(see	p.	65)	

Table	3.	Values	of	β 	and	γ 	corresponding	to	different	types	of	ellipsoids.	

	 	

																																																								

	
101	 See	eq.	3.77.	
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Chapter	4:	
The	depolarization	tensor:	advanced	treatment	

Calculations	of	n	from	gravitational	potentials	
The	gravitational	potential	of	all	ellipsoidal	shapes	have	been	solved	both	inside	

and	outside	the	body.	The	formulas	obtained	are	useful	not	only	for	the	calculation	
of	the	depolarization	tensor	of	the	asymmetric	triaxial	ellipsoid	but	also	for	the	
following	shapes:	

• a	>	b	>	c:	triaxial	ellipsoid;	
• a	≫	b	>	c	:	right	elliptic	cylinder	of	infinite	length;	
• a	=	b	>	c:	oblate	spheroid;	
• a	>	b	=	c:	prolate	spheroid.	

The	formulas	given	in	the	previous	chapter	for	the	infinite	sheet,	infinite	
cylinder	and	sphere	provide	a	verification	of	the	validity	of	the	formulas	that	will	
be	obtained	next.	

Triaxial	ellipsoid	

	The	triaxial	ellipsoid	is	the	shape	where	all	the	semiaxes	
are	different.	Its	principal	coordinate	system	—as	in	all	
cases—	is	the	one	such	that	axes	x,	y,	z	coincide	with	the	
ordered	semiaxes	
	 a	>	b	>	c.	 (4.1)	

As	will	be	seen	shortly,	the	components	of	the	
depolarization	tensor	n	are	here	given	by	elliptic	integrals,	
non-elementary	trascendental	functions	unfamiliar	for	
many	physicists	and	engineers.	As	their	values	are	usually	
calculated	from	series	expansions	or	taken	from	tables,	

	
Figure	7.	Triaxial	

ellipsoid.	

these	functions	are	usually	expressed	in	terms	of	a	few	canonical	or	normal	ones	
(Legendre’s	elliptic	functions),	two	of	which	appear	here.	Its	definitions	and	
properties	in	the	range	of	interest	are	given	at	Appendix	9.	Nevertheless,	as	
pointed	out	in	section	Integral	expressions	of	the	eigenvalues	of	N,	it	might	prove	
simpler	to	use	the	single	integral	eq.	3.68	for	the	numerical	calculation	of	internal	
depolarization	factors.	For	these	reason	the	components	of	n	will	be	expressed	in	
two	different	ways.	
The	calculation	of	 		V(

!r ), 	the	internal	gravitational	potential	of	an	homogeneous	
solid	ellipsoid	of	mass	density	σ		can	be	made	using	either	ellipsoidal102	or	

																																																								

	
102	 Stratton,	pp.	207-211.	
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cartesian	coordinates103.	The	latter,	used	here	because	it	is	the	more	concise	
approach,	was	made	in	1839	by	the	french	mathematician	Gustave	Lejeune	
Dirichlet104	and	widely	reproduced	afterwards	in	books	on	potential	theory.	The	
version	of	Dirichlet’s	proof	given	by	MacMillan105	is	summarized	next,	where	the	
gravitational	constant	was	chosen	by	this	author	to	be	unity106.	
Taking	as	coordinate	axes	the	principal	ones	of	the	ellipsoid,	MacMillan	changes	

to	a	system	of	coordinates	with	origin	at	field	point	 	The	radial	part	of	the	
volume	integral	turns	out	to	have	an	upper	limit	which	is	a	function	of	 	Using	
symmetry	arguments,	he	shows	that	several	of	the	resulting	integrals	vanish,	
leading	to	a	quadratic	expression	in	the	field	point	coordinates,		

	
 		
V(!r )=σ d3r '

!r − !r 'V
∫∫∫ =C0 +Cxx

2 +C y y
2 +Czz

2. 	 (4.2)	

The	four	coefficients	are	functions	of	the	parameters	a,	b	and	c	alone,	and	all	
may	be	expressed	in	terms	of	a	single	integral	and	its	derivatives	respect	of	the	
different	semiaxes107,		

	
		
Cα =

1
dα

∂C0
∂dα

−
C0
dα
2 , where α = x , y ,z , dx = a,dy = b,dz = c. 	 (4.3)	

After	a	change	of	integration	variable108	more	symmetric	expressions	for	Cx,	Cy,	
and	Cz	(see	eq.	3.71)	are	obtained,	as	given	below109.	As	all	these	coefficients	are	
needed	to	evaluate	the	external	depolarization	tensor	next	(see	section	General	
expression	of	external	n),	it	is	convenient	to	use	the	auxiliary	function	f	eq.	3.8:	

	
 		
f (!r )= −V(

!r )
4πσ = abc4 −I0 + Ix x

2 + I y y
2 + Izz

2( ) , 	 (4.4)	

where	

	

		

I0(0)=
ds

a2 + s( ) b2 + s( ) c2 + s( )0

∞

∫ , Iα =
ds

dα
2 + s( ) a2 + s( ) b2 + s( ) c2 + s( )0

∞

∫ ,

where α = x , y ,z and dx = a,dy = b,dz = c.
	 (4.5)	

																																																								
	

103	 	MacMillan,	pp.	45-62.	
104	 Stoner,	p.	807.	
105	 MacMillan,	section	32,	pp.	45-49.	
106	 MacMillan,	p.	24,	eq.	20.1.	
107	 MacMillan,	p.	48	eq.	32.10.	

108	 The	sustitution			sinϕ = c / c2 + s replaces	the	polar	angle	ϕ	by	the	new	integration	variable	s,	

and	the	upper	limit	of	integration	π/2	by	∞.	
109	 MacMillan,	p.	49	eq.	32.13.	

		 !r .
		 !r .
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Notice	that	the	notation	Ij	(0)	for	the	integrals	comes	about	becauses	it	turns	out	
that	they	are	a	special	case	of	the	integrals	Ij	(κ)	discussed	in	section	Obtention	of	
the	external	gravitational	potential	by	Ivory’s	method.	

From	eqs.	4.4,	4.5	and	3.4	the	depolarization	factors	N(0)	are	given	by	

	 		

Nα (0)= 1
2abc

ds

dα
2 + s( ) a2 + s( ) b2 + s( ) c2 + s( )0

∞

∫ ,

where α = x , y ,z and dx = a,dy = b,dz = c.
	 (4.6)	

The	integrals	may	be	checked	for	the	depolarization	tensor	of	the	sphere	(a	=	b	
=	c	=	R),	where		

	 	 (4.7)	

coincident	with	the	values	previously	derived	both	by	symmetry	arguments	and	by	
using	Gauss’s	Law	(eq.	3.66	and	Problem	19).	

Internal	depolarization	tensor	N	

Expressions	with	normal	elliptic	integrals	E	and	F	

The	integrals	eqs.	4.4	are	reduced	to	Legendre's	incomplete	elliptic	integrals	of	
the	first	and	second	kind	F(φ,k)	and	E(φ,k)	(see	Appendix	9)	by	the	sustitution	

	
		
s = a2

tan(t)2 −
c2

sin(t)2 . 	 (4.8)	

It	is	thus	obtained110:	

	

		

Nx(0)=Na(0)=
β ⋅γ

1−β 2( ) 1−γ 2
−E(φ ,k)+F(φ ,k)( ) ,

Ny(0)=Nb(0)= −
γ 2

β 2 −γ 2 +
β ⋅γ 1−γ 2

1−β 2( ) β 2 −γ 2( )E(φ ,k)−
β ⋅γ

1−β 2( ) 1−γ 2
F(φ ,k),

Nz(0)=Nc(0)=
β 2

β 2 −γ 2( ) −
β ⋅γ

β 2 −γ 2( ) 1−γ 2
E(φ ,k),

	 (4.9)	

																																																								

	
110	 MacMillan,	pp.	49-50;	Osborn,	eqs.	2.1	to	2.6;	Stoner,	eqs.	3.5–.	

!!

NR =
1
2R

3 ds

R2 + s( ) R2 + s( ) R2 + s( ) R2 + s( )0

∞

∫

= 1
2R

3 R2 + s( )−5/2ds
0

∞

∫ = 1
2R

3 − 23 R
2 + s( )−3/2⎡

⎣
⎢

⎤

⎦
⎥
0

∞

= 13 ,



Carlos	E.	Solivérez	68	

	

	
		
where β = b

a
, γ = c

a
, k = 1−β 2

1−γ 2 , 0≤φ = cos−1γ ≤ π
2 . 	 (4.10)	

These	principal	values	have	the	unit	trace	property	eqs.		3.15.	If	one	looks	at	the	
denominators,	formulas	seem	to	be	valid	only	for	

	 		β ≠1(b≠ a),β ≠γ (b≠ c)and	γ ≠1	(c ≠ a). 	 	

This	turns	out	to	be	false	as	may	be	seen	from	Figure	14,	Figure	15	and	Figure	16.	
The	reason	is	that,	when	taking	limits,	expressions	eqs.	4.9	converge	to	the	right	
values.	

N	elliptic	cylinder	

The	elliptic	cylinder	is	the	triaxial	ellipsoid	such	
that	one	semiaxis—a	in	our	ordering—	is	extremely	
large.	It	includes,	as	a	special	case,	the	right	circular	
cylinder	of	infinite	length	(b	=	c	in	our	convention).	
From	symmetry	arguments	the	properties	of	the	
cylinder	are	independent	of	coordinate	x,	and	the	
system	reduces	to	an	apparently	two	dimensional	one.	
Thus	—as	follows	also	from	taking	the	limit	a	→	∞	in	
eq.	A7.2—	the	equation	of	the	body’s	surface	is	

	
Figure	8.	Elliptic	cylinder.	

	
		
y2

b2
+ z

2

c2
=1. 	 (4.11)	

The	expressions	of	Nα	(κ )111	is	given	by	eqs.	3.73,	

	 		Na
ec(κ )=0. 	 (4.12)	

The	two	other	terms	are	given	by	eqs.	3.74	and	3.75,	where	the	value	for	Nc	may	
be	obtained	from	that	of	Nb	by	permuting	a	with	b.	Solving	the	integral	it	is	
obtained112	

	

		

N ec
b (κ )=

bc
2

ds

b2 + s( )3/2 c2 + sκ

∞

∫ = bc2
2

b2 − c2
c2 + s

b2 + s
κ

∞

= bc
b2 − c2

1− c2 +κ

b2 +κ

⎛

⎝
⎜

⎞

⎠
⎟ .

	 (4.13)	

																																																								
	

111	 All	integrals	Iα(κ )	are	evaluated	for	κ	≠	0	because	otherwise	the	calculations	will	have	to	be	
duplicated	in	the	section	devoted	to	the	calculation	of	the	External	depolarization	tensor.	

112	 Korn	&	Korn,	p.	941,	eq.	148.	
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Permuting	b	and	c	gives	

	

		

N ec
a (κ )=0, N ec

b (κ )=
bc

b2 − c2
b2 +κ − c2 +κ

b2 +κ

⎛

⎝
⎜

⎞

⎠
⎟ ,

N ec
c (κ )=

bc
b2 − c2

b2 +κ − c2 +κ

c2 +κ

⎛

⎝
⎜

⎞

⎠
⎟ .

	 (4.14)	

The	depolarization	factors	are	obtained113	by	setting	κ	=	0	in	the	previous	
equations,	giving	

	

		

N ec
a (0)=0, N ce

b (0)=
c

b+ c
, N ce

c (0)=
b
b+ c

. 	 (4.15)	

The	values	satisfy	the	unit	trace	rule	eq.		3.15	and	the	order	Na	≤	Nb	≤	Na.	Notice	
that	these	eigenvalues	cannot	be	obtained	from	the	graphs	given	by	Figure	14,	
Figure	15	or	Figure	16.	

For	the	right	circular	cylinder	the	last	two	eigenvalues	reduce	to	the	value	½	
given	by	eq.	3.57.	From	here	one	may	obtain	the	constant	thickness	sheet	of	
infinite	extension.	The	limits	to	take	are	

	

		

Nb
cts(0)= lim

b→∞
N ce

b (0)= limb→∞

c
b+ c

=0,

Nc
cts(0)= lim

b→∞
N ce

c (0)= limb→∞

b
b+ c

= lim
b→∞

1
1+ c

b

=1, 	 (4.16)	

which	coincide	with	the	calculations	made	using	Gauss’s	Theorem,	eq.	3.47.	

N	oblate	spheroid	

An	oblate	spheroid	is,	in	our	convention,	the	
ellipsoid	of	revolution	such	that	its	polar	semiaxis	c,	its	
axis	of	rotational	symmetry,is	smaller	than	the	
equatorial	ones:	a	=	b	>	c.	The	equatorial	eigenvalue	Ne	
of	the	oblate	spheroid	is	obtained	from	eq.	4.6.	As	the	
same	integrals	will	be	used	later	for	the	expression	of	
the	external	tensor,	the	lower	limit	κ	is	taken,	that	for		

	
Figure	9.	Oblate	spheroid.	

the	internal	case	should	be	made	zero.	Thus,	

																																																								

	
113	 Osborn,	eqs.	2.17	and	2.18.	MacMillan,	p.	71,	use	value	of	V	with	κ	=	0.	
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No

e(κ )=No
a(κ )=No

b(κ )=
a 2c
2

ds

c2 + s a2 + s( )2κ

∞

∫ ,
	

(4.17)		

The	primitive	of	this	integral	is	given	in	Appendix	8,	the	constants	being	A	=	c	2,		
B	=	a2,	Α	<	B.	Therefore,	eq.	A8.5	applies	giving	the	following	equatorial	term.	

	

		

No
e(κ )=

a2c
2

c2 + s
a2 − c2( ) a2 + s( ) +

1
a2 − c2( )3/2

arctan c2 + s
a2 − c2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

κ

∞

= − 12
a2c c2 +κ
a2 − c2( ) a2 +κ( ) +

1
2

a2c

a2 − c2( )3/2
π /2−arctan c2 +κ

a2 − c2
⎛

⎝
⎜

⎞

⎠
⎟ .

	 (4.18)	

Using	

	
		
tan π

2 −ϕ0
⎛
⎝⎜

⎞
⎠⎟
= 1
tanϕ0

= a2 − c2

c2 +κ
= tanϕ , 	 (4.19)	

	

		

No
e(κ )=No

a(κ )=No
b(κ )

= − 12
a2c c2 +κ
a2 − c2( ) a2 +κ( ) +

1
2

a2c

a2 − c2( )3/2
arctan a2 − c2

c2 +κ

⎛

⎝
⎜

⎞

⎠
⎟ .

	

(4.20)	

Alternative	expressions	expressions	for	angle	ϕ 	can	be	obtained	as	follows114.	

	

		

tanϕ = sinϕcosϕ , sinϕ = k a2 − c2 , cosϕ = k c2 +κ ,

sin2ϕ + cos2ϕ = k2 a2 +κ( ) =1, so	that k = a2 +κ( )−1/2 ,

therefore sinϕ = a2 − c2

a2 +κ
<1, cosϕ = c2 +κ

a2 +κ
<1.

	 (4.21)	

																																																								

	
114	 MacMillan,	p.	62	eq.	39.2,	uses	the	expression	in	terms	of	arcsin.	
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N o
e(κ )=No

a(κ )=No
b(κ )

= − 12
a2c c2 +κ
a2 − c2( ) a2 +κ( ) +

1
2

a2c

a2 − c2( )3/2
arctan a2 − c2

c2 +κ

= − 12
a2c c2 +κ
a2 − c2( ) a2 +κ( ) +

1
2

a2c

a2 − c2( )3/2
arccos c2 +κ

a2 +κ

= − 12
a2c c2 +κ
a2 − c2( ) a2 +κ( ) +

1
2

a2c

a2 − c2( )3/2
arcsin a2 − c2

a2 +κ
.

	 (4.22)	

For	κ	=	0,	the	eigenvalues	of	N	may	be	expressed	in	terms	of	the	aspect	ratio	γ		
as	follows.	Notice	that	β	=	γ	,	so	that	either	one	may	be	used	in	the	equation.	The	
second	is	chosen	so	that	Figure	10	and	Figure	12	have	the	same	independent	
variable.	

	

		

N o
e(0)=No

a(0)=No
b(0)

= − 12
γ 2

1−γ 2( ) +
1
2

γ

1−γ 2( )3/2
arctan 1−γ 2

γ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= − 12
γ 2

1−γ 2( ) +
1
2

γ

1−γ 2( )3/2
arccos(γ )

= − 12
γ 2

(1−γ 2)+
1
2

γ
(1−γ 2)3/2 arcsin 1−γ 2( ).

	 (4.23)	

Osborn	and	Maxwell	use	the	expression	in	terms	of	arcsin115	instead	of	the	simpler	
one	in	terms	of	arccos.	
The	polar	term	may	be	obtained	solving	the	definition	integral	eq.	4.6,	whose	

primitive	is	given	in	Appendix	8,	where	the	constants	take	the	values	A	=	c	2,		B	=	1	
so	that	Α	<	B.	Therefore,	eq.		A8.11	applies	giving	

																																																								

	
115	 Osborn,	eq.	2.19.	Maxwell,	p.	69	eqs.	438.11	and	438.12,	where	Np	=-L/4π,	Ne	=	-M/4π	=	-

N/4π,	e2	=	1	–	γ	2.	
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N o
p(κ )=No

c(κ )=
a2c
2

ds

c2 + s( )3/2 a2 + s( )κ

∞

∫ ,

= − a2c

c2 + s a2 + s( )
− a2c c2 + s
a2 − c2( ) a2 + s( ) −

a2c

a2 − c2( )3/2
arctan c2 + s

a2 − c2
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

κ

∞

= a2c

a2 − c2( ) c2 +κ
+ a2c

a2 − c2( )3/2
arctan c2 +κ

a2 − c2
⎛

⎝
⎜

⎞

⎠
⎟ −

π
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

	 (4.24)	

Using	
	 	tan ϕ −π /2( ) = −1/tan(ϕ0), 	 (4.25)	

and	eqs.	4.21,	the	following	expressions	are	obtained	for	N∫c(κ).
	
	

	

		

N o
p(κ )=No

c(κ )

= a2c

a2 − c2( ) c2 +κ
− a2c

a2 − c2( )3/2
arctan a2 − c2

c2 +κ

= a2c

a2 − c2( ) c2 +κ
− a2c

a2 − c2( )3/2
arccos c2 +κ

a2 +κ

= a2c

a2 − c2( ) c2 +κ
− a2c

a2 − c2( )3/2
arcsin a2 − c2

a2 +κ
.
	

(4.26)	

For	κ	=	0,	this	eigenvalue	of	N	may	be	expressed	in	terms	of	the	aspect	ratio	γ 	as	
follows:	

	

		

N o
p(0)=No

c(0)

= 1
1−γ 2( ) −

γ

1−γ 2( )3/2
arctan 1−γ 2

γ

= 1
1−γ 2 −

γ
(1−γ 2)3/2 arccos(γ )

= 1
1−γ 2 −

γ
(1−γ 2)3/2 arcsin 1−γ 2( ).

	 (4.27)	
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Notice,	by	inspection,	that	eqs.	4.23	and	4.27	fulfill	the	unit	trace	rule	

	 			Tr	N =2Ne
o +Np

o =1. 	 (4.28)	

If	γ		≪	1	(very	flat	oblate	spheroid),	the	eigenvalues	may	be	approximated	by116	

	
		
Ne =Na =Nb ≅

π
4 γ −γ 2 , Np =Nc ≅1−

π
2γ +2γ 2 , 	 (4.29)	

which	should	be	compared	with	the	values	given	at	section	Sheet	of	constant	
thickness	and	infinite	extension.	

	

Figure	10.	Np	and	Ne	as	a	function	of	γ 		for	the	oblate	spheroid.	

Figure	10	shows	the	values	of	the	equatorial	eigenvalue	Ne	and	the	polar	one	Np	
for	the	oblate	spheroid.	The	values	β 	=	γ		=	0 	(a	=	b	=	∞)	correspond	to	the	
constant	thickness	sheet	of	infinite	extension	where	Np	=	1,	Ne	=	0	(Table	3	and	
eq.	3.47);	the	values	of	the	sphere	are	β	=	γ		=	1 (eq.	3.66).	Both	functions	will	turn	
out	to	be	important	in	the	discussion	of	the	eigenvalues	of	N	for	the	triaxial	
ellipsoid	(see	section	Graphs	of		Na,	Nb	and	Nc)	where	they	provide	upper	or	lower	
bounds	of	certain	eigenvalues.	
																																																								

	
116	 Osborn,	eq.	2.21.	



Carlos	E.	Solivérez	74	

	

N	prolate	spheroid	

A	prolate	spheroid	is	an	ellipsoid	of	revolution	
(spheroid)	such	that	—in	our	convention—the	polar	
semiaxis	Na,	its	axis	of	rotational	symmetry,	is	greater	
than	the	equatorial	ones:	a	>	b	=	c.		

The	equatorial	eigenvalues	of	N	for	the	prolate	
spheroid	are	obtained	from	eq.	4.6.	As	the	same	
integrals	will	be	used	later	for	the	expression	of	the	
external	tensor,	the	lower	limit	κ	is	taken,	that	for	the	
internal	case	should	be	made	zero.	Using	the	upper	
index	“p”	to	identify	the	prolate	spheroid,	it	is	found	
that	

	
Figure	11.	Prolate	spheroid.	

	

		
Np

e(κ )=Np
b(κ )=Np

c(κ )=
ac2

2
ds

a2 + s( ) c2 + s( )2κ

∞

∫ . 	 (4.30)	

The	integral	eq.	4.30	is	discussed	in	Appendix	8,	where	the	constants	are	A	=	a2,	
B	=	c2,	A	>	B,	so	that	eq.	A8.6	applies.	It	is	thus	found	

	

		

Np
e(κ )=Np

b(κ )=Np
c(κ )

= − 12
γ 2 1+ s

1−γ 2( ) γ 2 + s( ) −
1
4

γ 2

1−γ 2( )3/2
ln 1+ s − 1−γ 2

1+ s + 1−γ 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∞

κ

= 1
2

ac2 a2 +κ
a2 − c2( ) c2 +κ( ) +

1
4

ac2

a2 − c2( )3/2
ln a2 +κ − a2 − c2

a2 +κ + a2 − c2

⎛

⎝
⎜

⎞

⎠
⎟ .

	 (4.31)	

The	value	of	the	logarithm	can	be	made	positive	(argument	>	1)	and	this	function	
can	be	replaced	by	the	hyperbolic	ones	by	using	the	some	of	the	following	
identities:		

	
		
ln a2 +κ − a2 − c2

a2 +κ + a2 − c2

⎛

⎝
⎜

⎞

⎠
⎟ = − ln a2 +κ + a2 − c2

a2 +κ − a2 − c2

⎛

⎝
⎜

⎞

⎠
⎟ = −2ln a2 +κ + a2 − c2( )

c2 +κ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
. 	 (4.32)	
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The	following	relationship117	is	used	to	obtain	alternative	expressions:	

		

		

if coshα = a2 +κ
c2 +κ

,

eα = coshα + sinhα = coshα + cosh2α −1 = a2 +κ + a2 − c2( )
c2 +κ

.
	 (4.33)	

	

		

Np
e(κ )=Np

b(κ )=Np
c(κ )

= 1
2

ac2 a2 +κ
a2 − c2( ) c2 +κ( ) −

1
4

ac2

a2 − c2( )3/2
ln a2 +κ + a2 − c2

a2 +κ − a2 − c2

⎛

⎝
⎜

⎞

⎠
⎟

= 1
2

ac2 a2 +κ
a2 − c2( ) c2 +κ( ) −

1
2

ac2

a2 − c2( )3/2
ln a2 +κ + a2 − c2

c2 +κ

⎛

⎝
⎜

⎞

⎠
⎟

= 1
2

ac2 a2 +κ
a2 − c2( ) c2 +κ( ) −

1
2

ac2

a2 − c2( )3/2
cosh−1 a2 +κ

c2 +κ
.

	 (4.34)		

The	corresponding	eigenvalues	of	N	are	found	setting	κ	=	0	in	eqs.	4.34	and	
using	the	aspect	ratio	γ	.	Notice	that	β	=	γ	,	so	that	either	one	may	be	used	in	the	
equation,	and	the	second	is	chosen	so	that	Figure	10	and	Figure	12	have	the	same	
independent	variable118.	Then	

	

		

Np
e(0)=Np

b(0)=Np
c(0)

= 1
2

1
1−γ 2( ) −

1
4

γ 2

1−γ 2( )3/2
ln 1+ 1−γ 2

1− 1−γ 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= 1
2

1
1−γ 2( ) −

1
2

γ 2

1−γ 2( )3/2
ln 1+ 1−γ 2( )

γ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= 1
2

1
1−γ 2( ) −

1
2

γ 2

1−γ 2( )3/2
cosh−1 1

γ
⎛
⎝⎜

⎞
⎠⎟
.

	 (4.35)	

																																																								
	

117	 Korn	&	Korn,	p.	817	eqs.	21.2-37	
118	 Osborn,	eq.	2.11.	Macmillan,	p.	63	eq.	4	with	κ	=	0.	
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The	integral	expression	for	the	polar	term	may	be	obtained	from	eq.	4.6	giving	

	

		
Np

p(κ )=Np
a(κ )=

ac2

2
ds

a2 + s( )3/2 c2 + s( )κ

∞

∫ 	 (4.36)	

The	primitive	of	this	integral	is	given	in	Appendix	8.	As	A	=	a2,	B	=	c	2,	A	>	B,	
eq.	A8.12	should	be	used	obtaining		

	

		

Np
p(κ )=Na

p(κ )= ac2

a2 − c2( ) a2 + s
+ 12

ac2

a2 − c2( )3/2
ln a2 + s − a2 − c2

a2 + s + a2 − c2
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

κ

∞

= − ac2

a2 − c2( ) a2 +κ
+ 12

ac2

a2 − c2( )3/2
ln a2 +κ + a2 − c2

a2 +κ − a2 − c2
⎛

⎝
⎜

⎞

⎠
⎟ .

	 (4.37)	

where	the	argument	has	been	inverted	to	make	positive	the	value	of	the	natural	
logarithm.	The	same	alternatives	as	for	eqs.	4.34	are	valid	here,	giving	

	

		

Np
p(κ )=Na

p (κ )

= − ac2

a2 − c2( ) a2 +κ
+ 12

ac2

a2 − c2( )3/2
ln a2 +κ + a2 − c2

a2 +κ − a2 − c2
⎛

⎝
⎜

⎞

⎠
⎟

= − ac2

a2 − c2( ) a2 +κ
+ ac2

a2 − c2( )3/2
ln a2 +κ + a2 − c2

c2 +κ

⎛

⎝
⎜

⎞

⎠
⎟

= − ac2

a2 − c2( ) a2 +κ
+ ac2

a2 − c2( )3/2
cosh−1 a2 +κ

c2 +κ
.

	 (4.38)	

The	eigenvalues	of	N(0)	in	terms	of	aspect	ratio	γ 	are	

	

		

Np
p(0)=Np

c(0)

= − γ 2

1−γ 2( ) +
1
2

γ 2

1−γ 2( )3/2
ln 1+ 1−γ 2

1− 1−γ 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= − γ 2

1−γ 2( ) +
γ 2

1−γ 2( )3/2
ln 1+ 1−γ 2

γ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= − γ 2

1−γ 2( ) +
γ 2

1−γ 2( )3/2
cosh−1 1

γ
⎛
⎝⎜

⎞
⎠⎟
.

	 (4.39)	
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For	very	slender	prolate	spheroids	the	following	approximations	are	valid119,	

	

 		

Ne(0)=Nb(0)=Nc(0)≅ 1
2 1+γ 2( )− 12γ 2 ln(2/γ ),

Np(0)=Na(0)≅ −γ 2 +γ 2 ln(2/γ ), if γ ≪1. 	
(4.40)		

The	aspect	ratio	γ		vanishes	in	the	limit	of	infinitely	large	a,	whereupon	one	gets	
the	eigenvalues	of	the	right	circular	clinder	of	infinite	length	previously	obtained	
by	using	the	electrostatic	Gauss’s	Law	(see	eqs.	3.57).	

	
Figure	12.	Np	and	Ne	as	a	function	of	γ 		for	the	prolate	spheroid.	

Figure	12	shows	the	values	of	the	polar	eigenvalue	Np	and	the	equatorial	one	Ne	
for	the	prolate	spheroid.	The	values	γ		=	0	(a	=	∞),	Np	=	0	correspond	to	the	infinite	
right	circular	cylinder	where	Ne	=	½	(Table	3	and	eq.	3.66);	the	values	β�= γ		=	1,	
Na	=	Nb	=	Nc	=	1/3,	to	the	sphere	(eq.	3.66).	Both	functions	will	turn	out	to	be	
important	in	the	discussion	of	the	eigenvalues	of	N	for	the	triaxial	ellipsoid	(see	
section	Graphs	of		Na,	Nb	and	Nc)	where	they	provide	upper	or	lower	bounds.	

Unified	treatment	of	N	for	spheroids	

	As	pointed	out	in	section	Integral	expressions	of	the	eigenvalues	of	N,	a	single	
integral	like	eq.	3.68	characterizes	all	eigenvalues	of	N.	The	same	thing	happens	
with	more	specialized	integrals,	like	the	ones	with	two	equal	semiaxes	that	give	
the	spheroid’s	eigenvalues.	The	reason	for	having	different	integrals	for	Na,	Nb,	Nc	
is	the	convention	a	≥	b	≥	c,	wich	underlies	eq.	4.51.	This	subtle	point	is	discussed	
next.		

Consider	the	integral	expression	for	the	equatorial	eigenvalue	of	the	oblate	
spheroid	eq.	4.17,	where	the	domain	of	positive	real	numbers	is	divided	in	two,	

																																																								

	
119	 Osborn,	eq.	2.13.	
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No
e =

1
2γ

ds

1+ s( )2 γ 2 + s0

∞

∫ , where 0≤γ = c
a
≤1,

N ? = 1
2δ

ds

1+ s( )2 δ 2 + s0

∞

∫ , where 1≤δ = c
a
.
	 (4.41)	

The	added	ranges	are	expected	to	give	a	single	continuous	curve	with	
continuous	slope.	The	curve	for	0	≤	γ		≤	1	—the	same	given	in	Figure	10—is		the	
dashed	one	in	the	left	half	of	Figure	13.	N?(δ ),	not	represented	there,	is	an	
increasing	function	of	δ	with	minimum	value	1/3	at	δ	=	1	and	maximum	value	1/2	
at	δ	=	∞.	As	that	domain	of	the	independent	variable	may	not	be	represented	
directly,	it	is	convenient	to	make	a	change	of	variable	to	1/δ,	that	corresponds	to	
the	domain	[1,0],	its	graph	being	the	dashed	curve	on	the	right	side	of	of	Figure	13.	
This	resulting	integral	is	

	

		

N ? = 1
2
1
δ

ds

1+ s( )2 1
δ 2 + s

0

∞

∫ = 1
2

δ 4ds

δ 2 +δ 2s( )2 1+δ 2s0

∞

∫

= 1
2

δ 2ds '
δ 2 + s '( )2 1+ s '0

∞

∫ , where s'=δ 2s , 1≥ 1
δ
= a
c
≥0.

	 (4.42)	

The	last	integral	coincides	with	that	for	the	equatorial	eigenvalue	of	the	prolate	
spheroid,	eq.	4.30.	Its	graphic	—previously	given	in	Figure	12—	is	the	dashed	line	
at	the	right	of	Figure	13.	The	definition	δ	=	a/c	seems	to	contradict	its	
identification	with	the	parameter	γ	=	c/a.	As	it	was	initially	assumed	that	c	>	a,	by	
the	convention	a		≥	b	≥	c	the	exchange	of	names	a	↔︎	c	should	be	made.	That	is	why	
in	the	right	side	of	Figure	13	the	independent	variable,	that	does	not	respect	the	
convention,	is	labeled	as	a’/c’.	

Therefore	

	

		
N ? = 1

2γ
2 ds

γ 2 + s( )2 1+ s0

∞

∫ =Np
e 	 (4.43)	

is	the	equatorial	eigenvalue	of	the	prolate	spheroid,	eq.	4.30.	The	reader	should	
verify,	in	a	similar	fashion,	that	the	extension	to	γ		>	1	of	the	expression	of	the	polar	
eigenvalue	of	the	oblate	spheroid	gives	the	polar	eigenvalue	of	the	prolate	
spheroid,	the	continuous	line	in	Figure	13.	
The	functions	that	give	the	dependence	of	the	eigenvalues	is	very	different	for	

the	oblate	(inverse	trigonometric	functions)	and	the	prolate	spheroid	(logarithm	
or	inverse	hyperbolic	functions),	as	seen	in	eqs.	A8.5		and	A8.6.	The	origin	of	the	
difference	is	the	sign	of	Δ	=	±(1-γ	2),	that	is,	wether	c	is	smaller	or	greater	than	a.	
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MacMillan120	has	shown	that	the	use	of	complex	variable	unifies	both	solutions	
(see	Problem	26)	

Graphs	of		Na,	Nb	and	Nc	

	
Figure	13.	The	equatorial	and	polar	eigenvalues	

of	spheroids	are	continuous	curves.	

For	accurate	calculations	of	the	eigenvalues	of	N	the	best	choice	is	to	use	
mathematical	software	that	includes	the	evaluation	of	the	incomplete	elliptic	
functions	E(φ,k)	and	F(φ,k).	On	the	other	hand,	a	better	understanting	of	their	
behavior	is	obtained	by	the	use	of	graphs.	As	discussed	in	section	N(0)	is	
determined	by	aspect	ratios,	the	eigenvalues	are	functions	of	the	ratios	of	semiaxes	
β	=	b/a	and	γ	=	c/a.	The	best	graphs	known	by	the	author,	those	of	Osborn,	depict	
them	as	sets	of	functions	of	γ ,	where		each	of	the	11	curves	has	fixed	values	of	0	≤	β	
≤	1	at	intervals	of	0.1.	These	graphs	for	Na,	Nb	and	Nc	are	reproduced	next	at	full	
page	width.	
As	shown	in	the	combined	graph	for	the	three	eigenvalues,	Figure	17,	for	any	

fixed	value	of	γ		the	eigenvalues	are	ordered	as	follows:	

	 Na	≤	Nb	≤	Nc.	 (4.44)	

Two	finite	eigenvalues	may	be	equal	only	for	the	equatorial	case	of	the	prolate	and	
oblate	spheroids	(see		Figure	12	and	Figure	10).	The	lowest	values	of	Na	are	given	
by	the	curve	for	the	polar	eigenvalues	of	the	prolate	spheroids	(see	Figure	12)	and	
the	largest	values	of	Nc	(γ ,γ)	for	the	polar	eigenvalues	of	the	oblate	spheroids	(see	

																																																								

	
120	 MacMillan,	p.	63	eq.	39.4.	
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Figure	10).	The	in-between	case	Nb	is	bounded	from	below	by	Na	and	from	above	
by	Nc.	

Na	
Function	Na(β,γ	)	is	shown	in	Figure	14,	where	its	values	are	confined	to	the	

grey	shaded	region,	bounded	by	the	upper	curve	Na(1,γ	)	(oblate	spheroid,	see	
Figure	10)	and	the	lowest	curve	Na(γ,γ)	(prolate	spheroid,	see	Figure	12)	as	follows	
from	Table	3	the	ordering	of	semiaxes	convention	eq.	3.83.	Therefore	

	 0	≦	Na(γ	0,γ	0 )		≦	Na(β,γ	0)	≦ Na(1,γ	0	)	≦	1/3.	 (4.45)	

For	fixed	γ	0,	as	shown	by	the	constant	β	curves,	Na	 is	an	increasing	function	of	β ;	
that	is	
	 if		β2	>	β1,	Na	(β2,γ	0)	>	Na	(β1,γ	0).	 (4.46)	

Each	of	the	curves	drawn	correspond	to	a	different	value	of	the	parameter	β	=	
b/a,	the	highest	being	the	one	for	the	oblate	spheroid.	The	upper	vertex	Na(1,1)	=	
Nb(1,1)	=	Nc(1,1)	=	1/3	corresponds	to	the	sphere,	the	transition	value	from	oblate	
to	prolate	spheroids.	The	lowest	vertex,	Na(β,0)	=	Na(1,0)	=	0,	characterizes	the	
constant	thickness	sheet	of	infinite	extension	(see	Table	3).	

Nb	
Function	Nb(β,γ	)	is	shown	in	Figure	15,	where	its	values	are	confined	to	the	

grey	shaded	region,	bounded	by	the	lower	curve	Nb(1,γ	)	(oblate	spheroid,	see	
Figure	10)		
and	the	upper	curve	Na(γ,γ )	(prolate	spheroid,	see	Figure	12)	as	follows	from	Table	
3	and	the	ordering	of	semiaxes	convention	eq.	3.83.	Therefore	

	 0	≦	Nb(1,γ	0	)	≦	Nb(β,γ	0)	≦ Nb(γ	0,γ	0 )	≦	1/2.	 (4.47)	

For	fixed	γ	0,	as	shown	by	the	constant	β	curves,	Nb	is	an	decreasing	function	of	
β ;	that	is	
	 if		β2	>	β1 ,	Na	(β2,γ	0)	<	Na	(β1,γ	0).	 (4.48)	

Each	of	the	curves	drawn	corresponds	to	a	different	value	of	the	parameter	
β	=	b/a,	the	highest	being	the	one	for	the	prolate	spheroid.	The	right	hand	vertex	
Nb(1,1)	=	Na(1,1)	=	Nc(1,1)	=	1/3	corresponds	to	the	sphere,	the	common	limit	of	
the	oblate	and	prolate	spheroids.	The	lowest	left	vertex,	Nb(β,0)	=	Nb(1,0)	=	0,	
characterizes	the	constant	thickness	sheet	of	infinite	extension;	the	upper	left	
vertex,	Nb(0,0),	characterizes	the	right	elliptic	cylinder	of	infinite	length	(see	Table	
3).	The	vertical	line	β	=	0	corresponds	to	the	the	elliptic	cylinders,	whose	values	
cannot	be	identified	from	the	graph,	because	all	of	them	have	β	=	γ	=	0	in	this	
parametrization.	

Nc	
Function	Nc(β,γ	)	is	shown	in	Figure	16,	where	its	values	are	confined	to	the	grey	

shaded	region,	bounded	by	the	upper	curve	Nc(1,γ	)	(oblate	spheroid,	see	Figure	
10)	and	the	lowest	curve	Na(γ,γ )	(prolate	spheroid,	see	Figure	12)	as	follows	from	
Table	3	and	the	ordering	of	semiaxes	convention	eq.	3.83.	
	 	



Depolarization	tensor	method	 81	

	

Figure	14.	Na	(L/4π)	as	a	function	of	c/a	(γ  ),	where	each	curve	corresponds	
	to	a	different	value	of	the	parameter	b/a (β  )	(taken	from	Osborn,	Figure	1).		
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Figure	15.	Nb	(M/4π)	as	a	function	of	c/a	(γ  ),	where	each	curve	corresponds	
to	a	different	value	of	the	parameter	b/a (β  )	(taken	from	Osborn,	Figure	2).		

	 	



Depolarization	tensor	method	 83	

	
Figure	16.	Nc	(N/4π)	as	a	function	of	c/a	(γ  ),	where	each	curve	corresponds	
to	a	different	value	of	the	parameter	b/a (β  )	(taken	from	Osborn,	Figure	3).		
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Therefore	
	 1/3	≦	Nc(1,γ	0,γ	0 )		≦	Nc(1,β,γ	0)	≦ Nc(1,1,γ	0	)	≦	1.	 (4.49)	

For	fixed	γ	0,	as	shown	by	the	constant	β	curves,	Nc	is	an	increasing	function	of	β ;	
that	is	
	 if		β2	>	β1,	Na	(β2,γ	0)	>	Na	(β1,γ	0).	 (4.50)	

Each	 of	 the	 curves	 drawn	 correspond	 to	 a	 different	 value	 of	 the	 parameter	
β	=	b/a,	the	highest	being	the	one	for	the	oblate	spheroid.	The	right	vertex	Nc(1,1)	
=	Nb(1,1)	=	Nc(1,1)	=	1/3	corresponds	to	the	sphere,	the	common	limit	of	the	oblate	
and	prolate	spheroids.	The	lowest	left	vertex,	Nc(0,0)	=	Nb(0,0)	=	1/2,	characterizes	
the	right		elliptic	cylinder	of	infinite	length;	the	highest	left	vertex,	Nc(1,0)	=	1,	the	
constant	thickness	sheet	of	infinite	extension	(see	Table	3).	

Combined	graph	

	
Figure	17.	Distribution	of	eigenvalues	of	N.	

In	Figure	17	the	graphs	for	the	three	eigenvalues	are	piled	up,	identifying	with	
different	colors	the	regions	and	boundary	curves	for	each	one121,	where	

																																																								

	
121	 A	similar	one	was	given	in	Stoner,	Figure	1.	



Depolarization	tensor	method	 85	

eigenvalues	Np	correspond	to	the	polar	axis	and	Ne	to	the	equatorial	ones	of	the	
spheroids.	As	an	example,	the	segments	of	allowed	values	for	each	are	shown	for	
γ		=	0.25,	illustrating	the	ordering	given	by	eq.	3.72.	The	constant	β	curves	have	
been	omitted	for	simplicity.	

The	reader	should	exercise	its	understanding	of	the	graphs	with	activities	like	
the	one	proposed	in	Problem	22	and	incorporated	into	Figure	17.	The	ellipsoids	
there	analyzed	are	represented	as	seen	from	a	direction	at	equal	angles	with	the	
three	semiaxes,	and	the	length	of	each	(c	is	the	vertical	one)	is	represented	as	the	
corresponding	fraction	of	a.	The	value	of	γ		is	kept	constant	(½)	and	that	of	β	is	½,	
¾	or	1.	For	Na,	on	the	curve	for	the	polar	eigenvalue	of	the	prolate	spheroid,	b	is	
equal	to	c	(Nb	=	Nc)	.	When	going	up	along	the	line	γ	=	½	the	b	semiaxis	increases	
for	Na	until	it	is	equal	to	a	on	the	curve	for	the	equatorial	eigenvalue	of	the	oblate	
spheroid	(Na	=	Nb).	For	Nb	the	b	semiaxis	decreases	until	is	equal	to	c	(Nb	=	Nc)	on	
the	curve	for	the	equatorial	eigenvalue	of	the	prolate	spheroid.	The	behaviour	is	
again	reversed	for	Nc,	where	b	increases	until	it	is	again	equal	to	a	(Na	=	Nb)	on	the	
curve	for	the	polar	eigenvalue	of	the	oblate	spheroid.	

The	range	of	the	different	eigenvalues	is	

	 0	≤	Na	≤	1/3,	0	≤	Nb	≤	1/2,	1/3	≤	Nc	≤	1,	 (4.51)	
so	that	Nc		is	the	only	eigenvalue	that	may	be	univocally	identified	from	its	value	in	
the	range	(1/2,1]	(see	problem	Problem	20).	

External	depolarization	tensor			

Obtention	of	the	external	gravitational	potential	by	Ivory’s	method	

In	the	previous	sections	the	value	of	the	gravitational	potential	 		V(
!r ) 	inside	a	

solid	homogeneous	general	ellipsoid,	eq.	4.2,	was	used	to	derive	the	values	of	the	
internal	depolarization	tensor	N.	If	a	similar	procedure	were	used	for	obtaining	the	
value	outside	the	body,	next,	the	expressions	obtained	would	be	extremely	
cumbersome.	More	than	a	century	ago,	in	1809,	the	Scottish	mathematician	James	
Ivory122	gave	a	concise	way	of	deriving	the	potential’s	external	values	from	the	
internal	ones	using	ellipsoids	confocal	with	the	body’s	surface	eq.	A7.2.	These	
confocal	ellipsoids	are	obtained	from	eq.	A7.20,	where	κ	>	0	is	usually	defined	as	
the	largest	algebraic	root	of	that	equation123,	and	its	value	is	the	sane	for	all	 	

!r on	
that	surface124.	These	confocal	ellipsoidal	surfaces	are	larger	than	the	body,	
enclose	it	completely	and	have	the	same	potential	as	certain	corresponding	points	
inside	the	body	(see	section	Confocal	ellipsoids	of	Appendix	7).	Only	the	final	
expressions	obtained	using	Ivory’s	method	are	given	here.	Readers	interested	in	

																																																								

	
122	 James	Ivory	at	English	Wikipedia.	
123	 But	see	eq.	Problem	20.	
124	 For	a	better	understanding	of	the	method	the	reader	should	start	by	reading	section	Confocal	

ellipsoids	and	tackling	afterwards	Problem	32,	its	application	for	the	obtention	of	the	external	
potential	of	a	solid	and	homogeneous	spherical	mass.	
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learning	how	to	obtain	them	may	look	at	the	relevant	sections	of	Macmillan’s	
book125.	

The	potential	V	and	the	auxiliary	function	f		eq.	3.8	are	then	given	by126,		

	
 		
f (!r )= −V(

!r )
4πσ = 1

2 −N0(κ )+Na(κ ) x2 +Nb(κ )y2 +Nc(κ )z2( ) , 	 	(4.52)	

where	the	coefficients	Nα (0 )	(α	=	x,	y,	z	or	a,	b,	c)	are	the	eigenvalues	of	the	internal	
depolarization	tensor,	but	also	appear	in	the	expression	of	the	external	one	for	
κ	≠	0.	These	coefficientes	are	given	by	the	following	integrals	

	

 		
N0(κ )=

abc
2

ds

a2 + s( ) b2 + s( ) c2 + s( )κ ( !r )

∞

∫ , 	 (4.53)	

	

 		

Nα (κ )=
abc
2

ds

dα
2 + s( ) a2 + s( ) b2 + s( ) c2 + s( )κ ( !r )

∞

∫ ,

where dx = a,dy = b,dz = c , α = x , y ,z and
x2

a2 +κ
+ y2

b2 +κ
+ z2

c2 +κ
=1.

	 (4.54)	

The	expressions	of	the	integrals	in	terms	of	Legendre’s	elliptic	functions	are	
given	at	the	end	of	Appendix	9127,	where	more	details	are	given	about	these	
functions.	The	corresponding	values	for	Nj	(κ )	are	

	 		
N0(κ )=

abc

a2 − c2
F φ(κ ),k( ) , 	 (4.55)	

	

		

Na(κ )=
abc

a2 − c2 a2 −b2( )
−E φ(κ ),k( )+F φ(κ ),k( )( ) , 	 (4.56)	

																																																								
	

125	 MacMillan,	sections	35-36,	pp.	52-58.	
126	 MacMillan,	p.	56,	eq.	36.1.	
127	 See	also	Bartczak	&	Breiter	&	Jusiel;	Ellipsoids,	material	points	and	material	segments;	Celestial	

Mech.	Dyn.		Astr.;	eq.	6.	
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Nb(κ )= −
abc c2 +κ

a2 +κ( ) b2 +κ( ) b2 − c2( )
+ abc a2 − c2

a2 −b2( ) b2 − c2( )E φ(κ ),k( )

− abc

a2 − c2 a2 −b2( )
F φ(κ ),k( ) ,

Nc(κ )=
abc b2 +κ

a2 +κ( ) c2 +κ( ) b2 − c2( )
− abc

a2 − c2( ) b2 − c2( )
E φ(κ ),k( ) ,

k = a2 −b2

a2 − c2
, x2

a2 +κ
+ y2

b2 +κ
+ z2

c2 +κ
=1, φ(κ )= arcsin a2 − c2

a2 +κ

⎛

⎝
⎜

⎞

⎠
⎟ .

	 (4.56)	

Notice	that	the	only	difference	with	the	interior	values	of	the	potential	eq.	4.4	is	
that	the	lower	limit	0	of	the	integrals	is	here	replaced	by 		κ(

!r ) ,	origin	of	the	
notation	Nα (0).	

Near	and	far	away	point	approximations	to	next	

Expressions	for	the	near	or	far	away	points	are	the	simplest	aproximations	to	
the	external	field	of	a	uniformly	polarized	ellipsoid	body,	both	when	the	
polarization	is	permanent	or	induced	by	an	applied	field.	
For	field	points	very	near	to	the	body’s	surface	the	values	eqs.	3.41	and	3.42	

may	be	used,	coinciding	with	eq.	4.66	for	κ	=	0:	

	

 			

next(!r S )=N(0)−

x2 /a4
w(!r )

x ⋅ y /a2b2
w(!r )

x ⋅z /a2c2
w(!r )

x ⋅ y /a2b2
w(!r )

y2 /b4
w(!r )

y ⋅z /b2c2
w(!r )

x ⋅z /a2c2
w(!r )

y ⋅z /b2c2
w(!r )

z2 /c4
w(!r )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

,

where w(!r )= x
2

a4
+ y

2

b4
+ z

2

c4
.

	 (4.57)	

For	points	far	away	from	the	uniformly	polarized	body	it	is	expected	that	the	
field	will	be	the	dipolar	one	(the	extension	of	the	second	of	eqs.	3.66)	generated	by	
the	dipole	moment	of	the	body,	presumption	that	is	confirmed	by	a	calculation	of	
the	limit	value	of	κ 	and	the	resulting	external	tensor	(see	Problem	33).	

General	expression	of	external	n	
From	eq.	3.4	the	components	of	the	depolarization	tensor,	either	inside	or	

outside	the	ellipsoidal	body,	are	given	by	
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nαβ

ext(!r )= ∂2 f (!r )
∂xα ∂xβ

, where !r ∉V . 	 (4.58)	

For	the	purpose	of	taking	first	derivatives	it	is	convenient	to	express	f,	eqs.	4.52	
and	4.54,	as	the	following	single	integral:	

	

 		

f (!r )= 1
2

x2

a2 + s
+ y2

b2 + s
+ z2

c2 + s
−1

a2 + s( ) b2 + s( ) c2 + s( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
ds

κ ( !r )

∞

∫ = 1
2 Q(s ,!r )ds
κ ( !r )

∞

∫ . 	 (4.59)	

Written	in	this	fashion	the	integrand	 		Q(s ,
!r ) 	vanishes	for	the	upper	and	lower	limit	

of	the	integral	(see	eq.	A7.20),	so	that	

	

 		

∂
∂xβ

Q(s ,!r )ds
κ ( !r )

∞

∫ = ∂
∂κ

Q(s ,!r )ds
κ ( !r )

∞

∫
⎛

⎝
⎜

⎞

⎠
⎟
∂κ
∂xβ

+ ∂
∂xβ

Q(s ,!r )ds
κ ( !r )

∞

∫

= −Q s ,!r( )
κ ( !r )

∞ ∂κ
∂xβ

+ ∂
∂xβ

Q(s ,!r )ds
κ ( !r )

∞

∫ = ∂
∂xβ

Q(s ,!r )ds
κ ( !r )

∞

∫

= abc2
2xβ

(d2 + s) a2 + s( ) b2 + s( ) c2 + s( )
ds

κ ( !r )

∞

∫ =Nβ κ )( ) xβ .

	 (4.60)	

where	eq.	4.54	has	been	used.	

That	is,	

	
 		
∂ f (!r )
∂xβ

=Nβ κ(!r )( ) xβ , 	 (4.61)	

where	N0(κ )	does	not	appear.	
The	calculation	of	the	second	derivatives	of	f	gives	

	

 		

∂
∂xα

∂ f (!r )
∂xβ

⎛

⎝
⎜

⎞

⎠
⎟ =

∂
∂xα

Nβ κ(!r )( ) xβ( )
=Nβ κ(!r )( )δαβ + xβ

∂
∂κ

Nβ κ( )( )∂κ(
!r )

∂xα
,
	 (4.62)	

requires	the	value	of			∂κ /∂xβ , 	which	may	be	obtained	from	its	implicit	definition	
eq.	A7.20.	The	result	will	shed	light	on	the	meaning	of	the	external	tensor	and	
verify	the	body’s	surface	value	of	next	eq.	3.41.	
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From	eq.	A7.20,	

	

		

∂
∂xβ

x2

a2 +κ
+ y2

b2 +κ
+ z2

c2 +κ
⎛

⎝⎜
⎞

⎠⎟
= ∂
∂xβ

xα
2

α=x , y,z
∑ d2α +κ( )−1

=
2xβ
d2β +κ

+ ∂
∂κ

xα
2

α
∑ d2α +κ( )−1⎛

⎝⎜
⎞
⎠⎟
∂κ
∂xβ

=
2xβ
d2β +κ

− xα
2

α
∑ d2α +κ( )−2⎛

⎝⎜
⎞
⎠⎟
∂κ
∂xβ

= ∂
∂xβ

1=0.

	 (4.63)	

That	is,	

		

∂κ
∂xβ

=

2xβ
d2β +κ

x2

a2 +κ( )2
+ y2

b2 +κ( )2
+ z2

c2 +κ( )2
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

, 	 (4.64)	

which,	as	may	be	seen	from	eq.	A7.8,	defines	the	components	of	a	vector	normal	to	
the	surface	of	the	confocal	ellipsoid	A7.20.	

The	derivatives	of	Nβ	give	 	

	

 		

∂Nβ(κ )
∂xα

=
∂Nβ(κ )
∂κ

∂κ
∂xβ

= ∂
∂κ

abc
2

ds

dβ + s( ) a2 + s( ) b2 + s( ) c2 + s( )κ ( !r )

∞

∫
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
∂κ
∂xβ

= −abc

xα
d2α +κ

⎛

⎝
⎜

⎞

⎠
⎟ /

x2

a2 +κ( )2
+ y2

b2 +κ( )2
+ z2

c2 +κ( )2
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

dβ +κ( ) a2 +κ( ) b2 +κ( ) c2 +κ( )
.

	 (4.65)	

From		eqs.	4.61,	4.62	and	4.65	it	is	thus	obtained	

	

 		

nαβ
ext(!r )= ∂2 f (!r )

∂xα ∂xβ
=Nβ κ( )δαβ +

∂Nβ(κ )
∂xα

x
β

=Nβ κ( )δαβ −abc
sα (
!r ,κ ) sβ(

!r ,κ )
a2 +κ( ) b2 +κ( ) c2 +κ( )

.
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Therefore128	

	

 			

next(!r )=N(κ )−abc ŝ(!r |κ ) ŝ(!r |κ )
a2 +κ( ) b2 +κ( ) c2 +κ( )

,

where Nαβ(κ )=δαβ

abc
2

ds

dα
2 + s( ) a2 + s( ) b2 + s( ) c2 + s( )κ

∞

∫ 	 (4.66)	

and	 		ŝ(
!r |κ ) 	is	the	unit	vector	normal	to	the	surface	of	the	κ  confocal	ellipsoid	

eq.	A7.20	at	the	external	field	point	 		!r : 	

	

 		

sα (
!r |κ )=

xα
d2α +κ

x2

a2 +κ( )2
+ y2

b2 +κ( )2
+ z2

c2 +κ( )2
,

where x2

a2 +κ
+ y2

b222 +κ
+ z2

c2 +κ

2

=1. 	 (4.67)	

Notice	that	the	first	term	of	next	is	a	field	point	dependent	extension	of	the	
internal	depolarization	tensor	N	and	proportional	to	its	volume.	In	the	second	term	
the	numerator	selects	components	of	the	polarization	normal	to	the	confocal	
ellipsoid,	while	the	denominator	gives	a	distance	of	the	order	of	r3	(see	eq.	A7.22).	
For	κ	=	0	it	is	obtained	the	value	of	next	at	the	surface	of	the	body	eq.	3.41.		

Traces	
In	what	follows	it	is	verified	if	eq.	4.66	fulfills	the	zero	trace	rule	eqs.	3.15.	

	

 			
Trnext(!r )= nαα

ext(!r )
α
∑ = Nαα (κ )−abc

s2α (
!r |κ )

α
∑( )/ s(!r |κ )2
a2 +κ( ) b2 +κ( ) c2 +κ( )

.
α
∑ 	 (4.68)	

																																																								
	

128	 Barczak	&	t	&	Jusiel;	Ellipsoids,	material	points	and	material	segments;	Celestial	Mech.	Dyn.		Astr.	
;	DOI	10.1007/s10569-006-9017-x.	The	value	coincides	with	the	Hessian	of	the	gravitational	
potential	V,		eqs.	9	and	10.	
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From	the	definitions	of	Nα	eqs.	4.54	it	follows	that	

	

		

Nαα (κ )
α
∑ = a⋅b ⋅c2

1
a2 + s

+ 1
b2 + s

+ 1
c2 + s

⎛
⎝⎜

⎞
⎠⎟

ds

a2 + s( ) b2 + s( ) c2 + s( )κ

∞

∫

= abc2
b2 + s( ) c2 + s( )+ a2 + s( ) c2 + s( )+ a2 + s( ) b2 + s( )

a2 + s( ) b2 + s( ) c2 + s( )⎡
⎣

⎤
⎦
3/2 ds

κ

∞

∫

= abc2

d
ds

a2 + s( ) b2 + s( ) c2 + s( )( )
a2 + s( ) b2 + s( ) c2 + s( )⎡

⎣
⎤
⎦
3/2 ds = −

abc

a2 + s( ) b2 + s( ) c2 + s( )
κ

∞

κ

∞

∫

= abc

a2 +κ( ) b2 +κ( ) c2 +κ( )
.

	 (4.69)	

That	is	

	

			
TrN(κ )= abc

a2 +κ( ) b2 +κ( ) c2 +κ( )
, 	 (4.70)		

which,	as	its	eigenvalues	Na(κ ),	Nb(κ )	and	Nc(κ ),is	of	the	order	of	r3	(see	eq.	A7.22)	
and	may	be	used	to	simplify	its	calculation.	

From	eq.	A7.18,	

	
 		

s2α (
!r |κ )

α
∑
s(!r |κ )2

=1. 	 (4.71)	

Upon	replacement	in	the	initial	expression	for	the	trace,	it	is	verified	that	

	  			Tr n
ext(!r )=0. 	 (4.72)	

Verificacion	for	the	sphere	

Equations	4.66	and	4.67	will	next	be	verified	using	the	solution	found	for	the	
sphere	using	the	electrostatic	Gauss’s	Law	eqs.	3.66	and	3.67.	To	that	end	the	
different	componentes	of	those	equations	are	evaluated	next.	

The	eigenvalues	of	N(κ)	are		

	

		

Na(κ )=Nb(κ )=Nc(κ )=
abc
2

ds

dα
2 + s( ) a2 + s( ) b2 + s( ) c2 + s( )κ

∞

∫

= R
3

2
ds

R2 + s( )5/2κ

∞

∫ = − R
3

3 R2 + s( )−3/2
κ

∞

= R
3

3 R2 +κ( )−3/2 ,
	 	(4.73)	
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where	a	=	b	=	c	=	R.	The	value	of	κ 	to	be	used	is	the	solution	of	the	equation	

	
		
x2

a2 +κ
+ y2

b2 +κ
+ z2

c2 +κ
= r2

R2 +κ
=1, κ = r2 −R2. 	 (4.74)	

Therefore	

	

		
Na(κ )=Nb(κ )=Nc(κ )=

R3

3 R2 +κ( )3/2
= 1
3
R3

r3
, 	 (4.75)			

its	value	being	1/3	for	the	sphere’s	interior	where	κ	=	0.	
The	last	term	of	eq.	4.66	has	in	the	the	numerator	

		
 		
ŝ(!r |κ )= sα (

!r |κ )x̂α
α
∑ =

xα x̂α
rα

∑ =
!r
r
, 	 (4.76)			

and	the	denominator	is	

	 		 a2 +κ( ) b2 +κ( ) c2 +κ( ) = r3 , 	 (4.77)			

giving	

	
 			
next(!r )= 1

3
R3

r3
1−R3

!r!r
r5

= 1
3R

3 1
r3
1− 3
!r!r
r5

⎛

⎝⎜
⎞

⎠⎟
. 	 (4.78)	

This	is	the	dyadic	such	that	both	for	permanent	or	induced	electric	(eqs.	2.7	and	
2.32a)	and	magnetic	polarization	(eqs.	2.40	and	2.48)	gives	the	following	external	
dipolar	fields	contributions	(see	eqs.	3.66	and	A4.1):	

	

 		

!
E !p(
!r )= k1

3 !p i
!r( )!r − r2!p
r5

,
!
H !m(
!r )= λ '

4π
3 mi

!r( )!r − r2 !m
r5

,
	 (4.79)	

where	eqs.	A1.4	and	A1.11	have	been	used.	

Elliptic	cylinder	

The	first	term	of	eq.	4.66	may	be	obtained	from	eqs.	4.12,	4.13	and	4.14129:	

	

		

N ec
a (κ )=0,

N ec
b (κ )=

bc
b2 − c2

b2 +κ − c2 +κ

b2 +κ

⎛

⎝
⎜

⎞

⎠
⎟ ,
	 (4.80)	

																																																								

	
129	 These	expressions	coincide	with	those	derived	from	the	potential	given	by	MacMillan	at	page	

71.	
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N ec

c (κ )=
bc

b2 − c2
b2 +κ − c2 +κ

c2 +κ

⎛

⎝
⎜

⎞

⎠
⎟ . 	 (4.80)	

Taking	limit	for	a	=	∞	in	the	second	term	of	eq.	4.66	gives		

	

		

lim
a→∞

abc

a2 +κ( ) b2 +κ( ) c2 +κ( )
= lim

a→∞

bc

1+ κ
a2

⎛
⎝⎜

⎞
⎠⎟
b2 +κ( ) c2 +κ( )

= bc

b2 +κ( ) c2 +κ( )
,
	 (4.81)	

	

 		

s y(
!r |κ )=

y
b2 +κ

y2

b2 +κ( )2
+ z2

c2 +κ( )2
, sz(

!r |κ )=
z

c2 +κ
y2

b2 +κ( )2
+ z2

c2 +κ( )2
. 	 (4.82)	

As	coordinate	x	is	absent,	the	value	of	κ		is	given	here	by	(see	eq.	A7.23	)	

	
		
y2

b2 +κ
+ z2

c2 +κ
=1 	 (4.83)	

From	eq.	4.70,		

	

			

Tr N ec(κ )=N ec
a (κ )+N ec

b (κ )+N ec
c (κ )

=0+ bc
b2 − c2

b2 +κ − c2 +κ

b2 +κ
+ b2 +κ − c2 +κ

c2 +κ

⎛

⎝
⎜

⎞

⎠
⎟

= bc

b2 +κ( ) c2 +κ( )
= lim

a→∞

abc

a2 +κ( ) b2 +κ( ) c2 +κ( )
.

	 (4.84)	

For	b	=	c		the	right	circular	cylinder	is	obtained.	The	value	of	κ 	is	obtained	from	

	
		
y2

b2 +κ
+ z2

b2 +κ
=1, so	that κ = r2 −b2. 	 (4.85)	

	The	eigenvalues	of	N	should	be	recalculated	from	eqs.	4.13	and	4.14,	

	

		

N ec
b (κ )=

bc
2

ds

b2 + s( )3/2 c2 + sκ

∞

∫ = b
2

2
ds

b2 + s( )2κ

∞

∫

= − 12
b2

b2 + s
κ

∞

= 1
2
b2

b2 +κ
= 1
2
b2

r2
,

	 (4.86)	

where	eq.	4.85	was	used.	
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The	coefficient	and	the	factors	of	matrix	S	are		

	

 		

b2

b2 +κ
= b

2

r2
, sα (

!r |κ )=
xα

b2 +κ
y2 + z2

b2 +κ( )2
=
xα
r
, 	 (4.87)	

so	that	for	the	right	circular	cylinder	of	inifinite	length	

	

 			

next(!r )=N(κ )− bc

b2 +κ( ) c2 +κ( )
S(!r |κ )

= b
2

r2

0 0 0
0 1/2 0
0 0 1/2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
− b

2

r2

0 0 0
0 y2 /r2 yz /r2
0 yz /r2 z2 /r2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= b
2

r2

0 0 0
0 1/2− y2 /r2 − yz /r2
0 − yz /r2 1/2− z2 /r2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
.

	 (4.88)			

the	very	same	zero	trace	eq.	3.58	obtained	using	Gauss’s	Law.	

Summarizing,	for	the	right	elliptic	cylinder		of	infinite	extension:	

 			

next(!r )=N(κ )− bc

b2 +κ( ) c2 +κ( )
S(!r ,κ ), N =

0 0 0
0 Nb

ec 0
0 0 Nc

ec

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
,

Nb
ec(κ )= bc

b2 − c2
b2 +κ − c2 +κ

b2 +κ

⎛

⎝
⎜

⎞

⎠
⎟ , N ec

c (κ )=
bc

b2 − c2
b2 +κ − c2 +κ

c2 +κ

⎛

⎝
⎜

⎞

⎠
⎟ ,

S(!r ,κ )=
0 0 0
0 s2y s ysz
0 s ysz s2z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
, sα (

!r ,λ)=

xα
dα
2 +κ

y2

b2 +κ( )2
+ z2

c2 +κ( )2
,

y2

b2 +κ
+ z2

c2 +κ
=1, α = y ,z , dy = b,dz = c.

(4.89)	



Depolarization	tensor	method	 95	

Oblate	spheroid	

	For	oblate	spheroids	a	=	b,	eq.	4.66	gives130	

	

 			
next(!r )=N(κ )−a2c ŝ(!r ,κ ) ŝ(!r ,κ )

a2 +κ( ) c2 +κ( )
, 	 (4.90)	

where	

	
		
x2 + y2

a2 +κ
+ z2

c2 +κ
=1, 	 (4.91)	

	

			

N(κ )=
Ne(κ ) 0 0
0 Ne(κ ) 0
0 0 Np(κ )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

. 	 (4.92)	

From	eqs.	4.20	and	4.26,	

	

		

No
e(κ )=No

a(κ )=No
b(κ )

= − 12
a2c c2 +κ
a2 − c2( ) a2 +κ( ) +

1
2

a2c

a2 − c2( )3/2
arctan a2 − c2

c2 +κ

⎛

⎝
⎜

⎞

⎠
⎟ . 	 (4.93)	

	

		

No
p(κ )=No

c(κ )

= a2c

a2 − c2( ) c2 +κ
− a2c

a2 − c2( )3/2
arctan a2 − c2

c2 +κ

⎛

⎝
⎜

⎞

⎠
⎟ .
	 (4.94)	

	

From	eqs.	and	4.67	and	A7.27,	

	

 		

ŝα (
!r ,κ )=

xx̂ + yŷ
a2 +κ

+ zẑ
c2 +κ

x2 + y2

a2 +κ( )2
+ z2

c2 +κ( )2
,

x2 + y2( )
a2 +κ

+ z2

c2 +κ
=1. 	 (4.95)	

Eqs.	4.20	and	4.26	reduce	to	the	formulas	for	the	infinite	sheet	(see	eq.	3.47)	for	
a	=	b	→	∞	and	to	those	of	the	sphere	(see	eq.	3.66)	for	a	=	b	=	c.	

The	trace	eq.	4.70	is	satisfied	because	

																																																								

	
130	 MacMillan,	p.	62	eq.	39.2.	
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Tr	N(κ )=No
a(κ )+N o

b(κ )+N o
b(κ )=2No

e(κ )+N o
p(κ )

= − a2c c2 +κ
a2 − c2( ) a2 +κ( ) +

a2c

a2 − c2( )3/2
arctan a2 − c2

c2 +κ

⎛

⎝
⎜

⎞

⎠
⎟

+ a2c

a2 − c2( ) c2 +κ
− a2c

a2 − c2( )3/2
arctan a2 − c2

c2 +κ

= a2c

a2 − c2( ) c2 +κ
− a2c c2 +κ
a2 − c2( ) a2 +κ( ) =

a2c

a2 +κ( ) c2 +κ
= aac

a2 +κ( ) a2 +κ( ) c2 +κ( )
.

(4.96)	

Prolate	spheroid	
	For	prolate	spheroids	a	>	b	=	c,	eq.	4.66	gives131	

	

 			
next(!r )=N p(κ )−ac2 ŝ(!r ,κ ) ŝ(!r ,κ )

a2 +κ( ) c2 +κ( )
, 	 (4.97)	

where	
		
x2

a2 +κ
+ y

2 + z2

c2 +κ
=1, 	 (4.98)	

	

			

Np(κ )=
Np

p(κ ) 0 0
0 Ne

p(κ ) 0
0 0 Ne

p(κ )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

. 	 (4.99)	

From	eqs.	4.31	and	4.37,	

	

		

Np
p(κ )=Np

a(κ )

= − ac2

a2 − c2( ) a2 +κ
+ 12

ac2

a2 − c2( )3/2
ln a2 +κ + a2 − c2

a2 +κ − a2 − c2
⎛

⎝
⎜

⎞

⎠
⎟ ,
	 (4.100)	

	

		

Np
e(κ )=Np

b(κ )=Np
c(κ )

= 1
2

ac2 a2 +κ
a2 − c2( ) c2 +κ( ) −

1
4

ac2

a2 − c2( )3/2
ln a2 +κ + a2 − c2

a2 +κ − a2 − c2
⎛

⎝
⎜

⎞

⎠
⎟ . 	 (4.101)	

																																																								

	
131	 MacMillan,	p.	62	eq.	39.2.	
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Finally,	from	eqs.	and	4.67	and	A7.27,	

	

 			

ŝα (
!r ,κ )=

xx̂
a2 +κ

+ yŷ + zẑ
c2 +κ

x2

a2 +κ( )2
+ y2 + z2

c2 +κ( )2
, where x2

a2 +κ
+ y

2 + z2

c2 +κ
=1. 	 (4.102)	

The	trace	eq.	4.70	is	satisfied	because	

			

Tr	N(κ )=Np
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c(κ )=Np
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e(κ )
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⎛

⎝
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⎞
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= ac2 a2 +κ
a2 − c2( ) c2 +κ( ) −

ac2

a2 − c2( ) a2 +κ
= ac2

a2 +κ c2 +κ( )
= acc

a2 +κ( ) c2 +κ( ) c2 +κ( )
.

(4.103)	

Eqs.	4.37	and	4.31	reduce	to	the	formulas	for	the	infinite	circular	cylinder	for	
a	→	∞,	b	=	c,	and		to	those	of	the	sphere	for	a	=	b	=	c.	

Triaxial	ellipsoid	

From	eqs.	A9.3,	A9.5,	A9.6	and	A9.7	the	eigenvalues	of	N(κ)	may	be	expressed	in	
terms	of	Legendre's	elliptic	funcions	as	follows.		

	

		

Na(κ )=
abc

a2 − c2 a2 −b2( ) −E(φ ,k)+F(φ ,k)( ) ,

Nb(κ )= −
abc c2 +κ

a2 +κ( ) b2 +κ( ) b2 − c2( )

+ abc a2 − c2

a2 −b2( ) b2 − c2( )E(φ ,k)−
abc

a2 − c2 a2 −b2( )F(φ ,k),

Nc(κ )=
abc b2 +κ

a2 +κ( ) c2 +κ( ) b2 − c2( )
− abc

a2 − c2 b2 − c2( )E(φ ,k),

where a≥b≥ c , k = a2 −b2

a2 − c2
, sinφ = a2 − c2

a2 +κ
,

x2

a2 +κ
+ y2

b2 +κ
+ z2

c2 +κ
=1.

	 (4.104)	
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Chapter	5:	
Energy,	forces	and	cavities	

Thermodynamics	of	electrostatic	and	magnetostatic	energy	

Basic	concepts	

Thermodynamics	studies	the	macroscopic	exchanges	of	energy	(work,	heat,	
internal	and	radiation	energy...)	between	a	material	system	and	its	surroundings,	
and	the	values	taken	by	its	state	variables	in	the	process.	To	that	end	state	
functions132	are	defined	such	that	—for	reversible	processes—	its	equilibrium	
values	are	a	function	only	of	the	set	of	final	values	of	the	state	variables	and	are	
independent	of	the	path	followed	to	obtain	them133.	Introductory	courses	of	
thermodynamics	discuss	only	the	case	of	gases,	where	the	state	variables	are	
volume	V,	pressure	P	and	temperature	T.	The	first	two	are	clearly	insuficient	for	
elastic	solids,	and	the	electromagnetic	variables	have	yet	to	be	added.	
The	performance	and	interpretation	of	experiments	with	electric	and	magnetic	

fields	and	polarizations	require	a	careful	formulation	of	its	thermodynamic	
behaviour	that	is	seldom	done	in	introductory	texts	on	electromagnetism.	As	many	
difficulties	are	found	in	the	way,	a	short	but	general	overview	will	be	given	in	this	
chapter	in	order	to	identify	some	important	features	of	the	problema	and	write	
down	—without	proof—the	principal	expressions	required,	identifying	its	source.	
The	author	is	not	familiar	with	any	book	giving	a	full	analysis	of	the	
thermodynamics	of	electromagnetism,	but	there	are	several	studies	in	
international	journals	of	physics134.	

	The	state	variables	required	for	the	full	thermodynamical	characterization	of	
elastic	solids	are	listed	below.	They	are	grouped	in	pairs	("cause"	and	"effect"),	
through	scalar	and	tensorial	material's	properties,	by	the	differential	relationship	
that	connects	them	in	the		linear	range:	

o temperature	T	and	entropy	S,	related	by	the	heat	capacity	c:	
		
dS = c

T
dT ; 	

o mass	m	and	gravitational	field	 !!
g, 	related	by	the	space	metric;	

o strain	tensor	e	and	stress	tensor	σ ,	related	by	the	compliance	tensor	c	of	elastic	
modulus:	dσ  =  c •	de;	

																																																								
	

132	 Landau	and	Lifschitz	call	them	thermodinamic	potentials,	a	name	more	evocative	of	its	
properties.	See	pp.	46-96.	

133	 This	characteristic	is	shared,	for	instance,	by	the	electrostatic	potential	 φ.	
134	 See,	for	instance,	On	Magnetic	and	Electrostatic	Energy	and	The	Thermodynamics	of	

Magnetization	by	E.	A.	Guggenheim,	,	Proc.	Roy.	Soc.	(London)	vol.	A155,	pp.	49—101,	1936.	
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o electric	field	 !

E 	and	electric	displacement	 !!


D, 	related	by	the	electric	permeability	

tensor	 ε :	 !!

D= ε i


E; 	

o magnetic	field	 !

H 	and	magnetic	induction	 !!


B , 	related	by	the	magnetic	

permeability	tensor	µ :	 !!

B = µ i


H. 	

For	the	magnetic	case	equilibrium	refers	to	the	steady	state	where	electric	
currents	are	constant.	It	must	also	be	stressed	that	the	formulas	given	in	this	
chapter	are	not	valid	for	dynamic	phenomena	such	as	those	involved	in	the	
interaction	of	electromagnetic	radiation	with	matter,	processes	that	are	typically	
adiabatic.	

Irreversible	processes	are	characterized	by	an	irreversible	increase	of	entropy	
dS.	If	dQ	is	the	quantity	of	heat	transmitted	in	an	elementary	process,	then	

	 dQ	=	T·dS.	 (5.1)	

Conduction	currents	in	metals	and	magnetic	hysteresis	are	typical	
electromagnetic	irreversible	(dissipative)	processes.	The	atomic	and	molecular	
currents	giving	rise	to	the	magnetization	of	solids	are	not	dissipative,	nor	is	the	
superconductor	case.	The	theoretical	calculation	of	electromagnetic	energy	
computes	only	the	reversible	work	required	to	stablish	a	configuration	of	fields	
and	polarizations	in	an	ideal	non	dissipative	process.	In	real	processes	—no	matter	
how	slow	you	make	them—	irreversible	phenomena	are	always	present.	Thus,	
work	dW	done	on	a	real	system	partially	dissipates	in	internal	(case	of	the	
electrical	resistance)	or	external	irreversible	processes.	Therefore	

	 dW	=	dWrev	–	T·dSirrev,	 (5.2)	

and	the	work	computed	in	electromagnetic	calculations	is	usually	only	the	
reversible	part	dWrev.	
The	most	important	thermodynamic	state	function	is	the	internal	energy	U	that	

characterizes	the	balance	between	the	quantity	of	heat	dQ	delivered	to	the	system	
and	the	mechanical	work	dW	done	by	the	system	on	its	surroundings,	

	 dU	=	dQ	-	dW.	 (5.3)	

For	solids	the	work	expression	used	for	gases,	dW	=	p·dV,	must	be	replaced	by	

	 dW	=	c •	de,	 (5.4)	

to	which	must	be	added	the	contributions	of	electromagnetic	energy.	
Newcomers	to	electromagnetism	try	to	calculate	internal	energies	by	using	

forces	to	compute	the	external	work	required	to	build	the	system.	This	method,	
originated	in	mechanics,	is	reinforced	in	the	study	of	gases,	where	pressures	are	
introduced	as	surface	distribution	of	forces.	This	is	not	the	case	in	
electromagnetism,	where	the	starting	point	for	calculating	the	variations	of	energy	
is	not	the	concept	of	force	or	torque.	On	the	contrary	—as	will	be	seen	in	this	
chapter—	the	latter	are	evaluated	as	the	rate	of	change	of	electromagnetic	energy	
respect	to	certain	longitudes	or	angles.	
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An	important	part	of	the	problem	is	that	the	variation	of	electromagnetic	energy	
depends	both	on	its	spatial	distribution	and	its	time	variation.	If	at	this	point	the	
reader	argues	that	we	are	considering	here	only	static	fields	and	steady	state	
currents,	some	variations	should	be	irrelevant,	he	should	read	again	the	
introduction	to	eq.	5.2.	The	electromagnetic	energy	contained	in	any	distribution	
of		polarized	matter	is,	by	definition,	that	required	to	build	that	distribution	from	
an	initial	state	where	polarizations	are	zero.	This	necessarily	requires	a	time	
variation	of	polarizations	and	fields,	process	where	induced	currents	make	finite	
contributions	to	the	energy	of	the	system	and	generate	radiation,	however	slowly	
the	process	is	made.	Moreover,	fields	are	not	limited	to	material	bodies	but	extend	
throughout	all	space.	
According	to	the	type	of	process	a	material	system	undergoes,	it	is	convenient	to	

describe	it	using	a	peculiar	state	function	different	from	U.	This	is	done	in	a	way	
such	that	its	differential	expression	does	not	contain	the	differential	of	the	state	
variable	one	wishes	to	keep	constant.	For	instance,	U	is	the	more	convenient	state	
function	for	the	description	of	processes	where	strains	can	be	fixed,	letting	
temperature	T	and	stress	σ 	to	take	the	values	that	follow	from	the	allowed	heat	
exchange.	Of	course,	any	process	may	be	described	by	any	state	function,	but	the	
theoretical	analysis	is	simplified	when	using,	ceteris	paribus,	an	appropriate	
thermodynamic	potential.	

Thermodynamics	of	electromagnetism	
The	measurement	of	electromagnetic	properties	of	polarized	bodies	is	

frequently,	though	not	always,	made	in	experiments	where	mechanical	work	is	
done.	In	those	cases	—the	only	discussed	in	this	book—forces	and	torques	are	
related	to	the	variation	of	parameters	characterizing	the	configuration	of	fields	and	
polarizations.	In	a	ceteris	paribus	fashion,	several	variables	must	be	kept	fixed	
throughout	the	process.	

The	body's	intrinsec	geometric	configuration	—the	relative	distribution	of	
polarizable	matter—	is	one	of	the	variables	that	must	be	kep	constant.	This	
configuration	is	—in	our	case—	the	ellipsoidal	shape	and	semiaxes	that	determine	
the	fields's	values,	usually	invariable	when	de,	eq.	5.4,	vanishes.	As	mentioned	
before,	it	is	then	convenient	to	use	of	the	internal	energy	U.	In	practice,	strain's	
control	is	not	always	possible,	as	happens	in	the	phenomena	of	electrostriction135,	
magnetostriction136,	piezoelectricity	137	and	piezomagnetism,	that	requiere	special	
treatment.	

Electric	and	magnetic	polarizations	—dependent	on	the	microscopic	behaviour	
of	atoms	and	molecules—	are	functions	of	temperature	T,	a	variable	that	will	be	
usually	necessary	to	keep	constant.	As	T	is	a	“natural	variable”	of	U,	it	is	convenient	
to	define	the	following	thermodynamic	potential	

	 F	=	U	−	T·S,		 (5.5)	

																																																								
	

135	 Landau	and	Lifchitz,	p.	55.	
136	 Landau	and	Lifchitz,	p.	155.	
137	 Landau	and	Lifchitz,	p.	73.	



Carlos	E.	Solivérez	102	

	

called	Helmholtz	free	energy,	for	which	

	 dF	=	T·dS	−	dW	− T·dS	−	S·dT	=	−	dW	− S·dT.	 (5.6)	

The	external	work	done	in	an	isothermal	process	is	then	

	 dW	=	dWrev	−	T·dSirrev.	=	−	dF.	 (5.7)	

Any	system	tends	to	reorganize	it	elements	in	order	to	to	minimize	its	energy	in	
the	final	state	of	equilibrium.		When	there	are	no	external	constraints,	F	varies	
until	reaching	a	minimum	dF	vanishes	and	the	system	ceases	to	do	external	work.	
The	reversible	work	delivered	in	the	process	of	reacommodation	is	

	 		ΔWrev = dWrev∫ = −(ΔF −T ⋅ΔSirrev. ), 	 (5.8)	

reason	why	F	characterizes	the	maximum	quantity	of	work	that	it	is	possible	to	
extract	from	a	system138,139,	concept	that	in	chemistry	is	called	afinity.	
The	internal	energy	U	and	the	free	energy	F	include	an	electromagnetic	

contribution.	For	F	its	value	Fem	is	the	amount	of	reversible	work	necessary	to	
build	up	the	final	configuration	of	charges,	electric	currents	and	polarized	matter.	
For	the	linear	case	(whose	description	requires	several	anisotropy	tensors	of	rank	
two)	its	expression	in	terms	of	fields	is140	

	
 			
Fem e=const .

= 1
2λ

!
E(!r )i !D(!r )d3r

V
∫∫∫ + 1

2λ '
!
B(!r )i !H(!r )d3r

V
∫∫∫ , 	 (5.9)		

where	the	integral	is	taken	over	all	the	regions	containing	the	sources	of	the	fields,	
the	ones	where	 !∇ i


D 	and	 !∇×


H 	are	non-vanishing.	There	are	no	general	

expressions	for	the	non-linear	case,	where	each	specific	situation	has	to	be	dealt	
with.	For	conductors	or	superconductors	the	surface	density	of	charge	or	current	
should	be	made	explicit	through	appropiate	mathematical	transformations.	

Some	authors	extend	integrals	to	all	space,	in	accordance	to	the	concept	that	
energy	is	contained	in	the	fields.	Although	this	seems	to	modify	the	value	of	Fem,	it	
is	not	so		because	there	are	partial	cancellations	of	the	contributions	of	the	fields	
inside	the	body	with	those	outside	it141.	Special	care	should	be	taken	with	the	
calculation	of	the	work	necessary	to	polarize	matter	with	fields	assumed	to	be	
fixed,	as	sources	provide	o	receive	energy	in	order	to	keep	fields	constant	when	
matter	is	introduced,		even	for	very	slow	process142.	

																																																								

	
138	 Panofsky	and	Phillips,	p.	90.	
139	 Landau	and	Lifchitz,	pp.	52-55,	129-131.	
140	 Reitz,	pp.	120	and	254.	
141	 Stratton,	pp.	112-113,	discusses	this	cancelation	but	gives	no	actual	examples.	See	Problem	36.	
142	 See,	for	instance,	V.	Gilinsky	and	D.	Holliday,	Interaction	Energy	of	a	Dielectric	in	an	Electrostatic	

Field,	Am.	J.	Phys.	vol.	34,	pp.	1134-1138	(1966).	
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Fem	does	no	include	the	contribution	from	body’s	changes	of	shape,	which	is	
usually	describe	using	the	thermodynamic	potential	called	Gibbs	free	energy143	

	  dΦ	=	U	–T·S	+	e·dσ ,	 (5.10)	

where	work	includes	the	variations	of	e	and	stress	takes	the	final	value	
corresponding	to	the	isothermal	process.	The	variation	of	Gibbs	free	energy	can	be	
measured	in	actual	experiments,	but	is	more	difficult	to	calculate	than	Helmholtz	
free	energy.	

For	the	formulas	given	in	this	chapter	processes	are	assumed	to	be	isothermal	
and	Helmholtz	free	energy		F	is	evaluated	assuming	a	constant	strain	tensor	e.	For	
instance,	actual	experiments	should	provide	an	efficient	mean	of	fast	transference	
of	any	quantity	of	heat	generated,	so	that	the	isothermal	condition	is	fulfilled.	
These	two	conditions	are	seldom	fulfilled	in	irreversible	phenomena	as	hysteresis	
and	in	piezoelectric	and	piezomagnetic	processes	that	modify	significantly	the	
dimensiones	of	the	crystal	lattice,	creating	also	additional	fields.	The	use	of	the	
depolarization	tensor	method	for	these	kind	of	phenomena	—as	well	of	others	
peculiar	of	single	crystales—	will	probably	requiere	modifications	or	restrictions	
that	have	not	been	studied	by	the	author144.	

Depending	on	the	kind	of	anisotropy,	it	may	be	convenient	to	use	coordinate	
axes		different	than	the	ellipsoid’s	semiaxes	where	N	is	diagonal.	The	goal	is	to	
simplify	the	inverse	matrices	required	for	the	case.	This	use	of	a	coordinate	system	
fixed	to	the	body	should	take	into	account	the	case	of	rotating	samples	depicted	in	
Figure	21,	both	for	rotations	and	torques.	

Solved	problems	related	to	the	energy	of	polarizable	ellipsoidal	bodies	
immersed	in	applied	fields	are	solved	in	Chapter	6.	They	are	only	selected	
examples	of		the	way	in	which	the	depolarization	tensor	method	may	simplify	the	
análisis	of	some	experiments.	

Anisotropy	energy	
A	body	under	the	action	of	an	applied	field	experiences	a	torque	if	its	energy	

depends	of	the	orientation	of	the	field	respect	to	the	body.	A	sphere	of	untextured		
policrystalline	iron	has	minimum	free	energy	when	 !


M 	and	 !!


H0 	are	parallel.	For	any	

other	orientation,	the	body’s	magnetic	dipoles	(that	is,	 !

M )	experience	a	torque	

than	tends	to	align	them	with	the	applied	field.	This	does	not	generate	a	torque	on	
the	body	when	the	material	is	isotropic,	so	that	the	magnetization	may	freely	
orientate	with	no	expense	of	energy	apart	from	disipative	effects.	The	sphere	will	
remain	in	equilibrium	at	any	orientation	respect	to	the	field	because	the	
magnetization	will	follow	the	field,	not	the	body.	

																																																								

	
143	 Landau	and	Lifchitz,	p.	62.	
144	 Nye,	chapter	X	pp.	170-191,	makes	a	detailed	discussion	of	the	equilibrium	thermodynamics	of	

physical	properties	of	single	crystals.	His	figures	10.1a	and	10.1b	give	a	concise	pero	quite	
illustrative	summary	of	the	problem.	
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The	direction	and	magnitude	of	polarization	—and	therefore	the	free	energy—
may	depend	on	the	body’s	orientation	respect	to	the	applied	field.	This	anisotropy	
of	energy	has	two	different	origins,	shape	and		cristalline	effects.	
Shape	anisotropy	of	energy145	originates	

from	the	effect	of	the	body’s	shape	on	the	
internal	field	and	polarization.	For	
ellipsoidal	bodies	the	effect	is	fully	described	
by	the	internal	depolarization	tensor	N.	For	
the	family	of	ellipsoidal	bodies,	the	only	one	
without	shape	anisotropy	is	the	sphere	
where	the	three	eigenvalues	are	equal	(see	
eq.	3.66).	For	the	rest,	the	energy	required	to	
induce	polarization	along	two	different	
directions	within	the	ellipsoid	is	in	general	
different.		

	

Figure	18.	Deviation	δ	of	the	internal	
	field	respect	to	the	applied	one		

The	general	equations	that	describe	the	phenomena	of	induced	polarization	are	
given	in	section	2.85	and	reproduced	below.	The	upper	index	that	identifies	the	
internal	field	has	been	suppressed	because	it	will	be	the	only	field	of	interest	in	
what	follows.	

	
 		

F = F0 −N iQ(F), Q(F)= χ iF,
F = 1+N i χ( )−1 iF0 , Q = χ iFint = χ i 1+N i χ( )−1 iF0.

	 (5.11)	

Let’s	analyze,	then,	the	behaviour	of	an	isotropic	triaxial	ellipsoidal	body	on	the	
plane	xy	where	the	principal	values	of	the	internal	depolarization	tensor	are	Na	and	
Nb.	The	field	and	the	polarization	are	exclusively	those	induced	by	the	fix	applied	
field !!


F 0. 	In	the	body’s	principal	system	of	coordinates	the	components	on	the	plane	

of	interest	are	

	
		
Fy =ν yFy

0 , Fz =ν zFz
0 , να =

1
1+ χNα

. 	 (5.12)	

The	deviation	angle	δ	of	the	induced	field	respect	to	the	applied	one	(see	Figure	
18)	can	be	found	from	the	scalar	product	

	

 		

!
F i
!
F 0 = cosδ ⋅F ⋅F 0 = FyFy0 +FzFz0

=ν y Fy
0( )2 +ν z Fz

0( )2 = ν y sen2θ +ν z cos2θ( ) F 0( )2 .
	 (5.13)	

The	modulus	of	the	internal	field	differs	from	the	applied	one	by	a	factor	
depending	on	the	orientation	of	the	latter	respect	to	the	body:	

	 		F = F 2y +F
2
z = ν yFy

0( )2 + ν zFz
0( )2

z
= ν 2

y sen2θ +ν 2
z cos2θ ⋅F 0. 	 (5.14)	

																																																								

	
145	 Brown	(1963),	p.	106.	
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The	deviation	angle	δ		is	then	given	by	

	

 		
cosδ =

!
F i
!
F 0

F ⋅F 0
=

ν y sen2θ +ν z cos2θ

ν 2
y sen2θ +ν 2

z cos2θ
. 	 (5.15)	

 !

F 	and	 !!


F 0 	are	parallel	only	along	the	ellipsoid’s	ejes	principal	axes,	where	its	

magnitude	differs	by	the	factor	να.	Due	to	shape	anisotropy	the	minimum	free	
energy	is	obtained	when	the	body´s	largest	or	smaller	semiaxis	—depending	on	
the	kind	of	polarization,	as	discussed	in	next	section—	is	oriented	along	the	
applied	field.	If	this	is	not	so,	there	is	a	torque	that	tends	to	orientate	the	body	
along	that	direction.	
Crystalline	anisotropy	energy	is	originated	by	the	spatial	order	of	the	material’s	

atoms	and	molecules.	A	simple	example	that	illustrates	the	phenomena	is	the	two	
polarizable	molecules	analyzed	in	the	section	Induced	electric	polarization	of	two	
interacting	atoms.	The	only	materials	with	crystalline	anisotropy	are	single	
crystals	or	textured	policrystalline	ones.	In	the	latter	the	small	crystals	have	some	
of	its	faces	preferently	oriented	along	certain	direction,	as	happens	in	laminated	
metals.	Powders,	untextured	policrystalline	materials	and	amorphous	solids	have	
no	macroscopic	order	and,	therefore,	no	crystalline	anisotropy	energy.	
For	the	case	of	induced	polarization	—the	only	one	discussed	here—the	

simmetries	that	give	origin	to	crystalline	anisotropy	are	reflected	in	the	non-scalar	
anisotropic	susceptibility	tensor.	The	main	properties	of	this	tensors	are	given	in	
Appendix	5.	Its	demonstration,	not	given	there,	can	be	made	in	similar	way	as	for	
the	case	of	the	depolarization	tensor	(see	section	Symmetries)	but	requires	a	
knowledge	of	crystalline	structures	that	cannot	be	assumed	for	the	readers	of	this	
book.	

Origin	of	torques	exerted	on	a	body	
In	this	section	it	is	discussed	the	origin	of	the	moment	exerted	on	an	ellipsoid	

outside	the	equilibrium	orientation.	The	expression	of	the	par	resultante	for	each	
case	is	discussed	in	other	sections.	

At	Figure	19	an	example	is	given	of	a	common	experiment	where	torque	
appears.	A	prolate	spheroid,	ellipsoidal	shape	commonly	used	in	experiments,	is	
suspended	so	that	it	can	rotate	around	an	axis	normal	to	its	symmetry	axis	x	
(corresponding	to	the	largest	semiaxis	a).	The	rotation	axis	z	is	outgoing	from	the	
back	of	the	figure.	The	minimum	value	of	the	isothermal	and	isobaric	free	energy	
Fe	is	assumed	to	be	obtained	when	the	direction	of	the	largest	semiaxis	a	coincides	
with	that	of	the	field	 		

!
F0. 	If	that	semiaxis	is	initially	an	angle	ϕ		apart	from	the	field,	

a	couple	is	exerted	on	the	body,	such	that	tends	to	diminish	it.	
The	couples’s	origin	is	a	force	distributed	over	the	body’s	volume	that,	due	to	

the	constraint	imposed	by	the	rotation’s	axis,	manifests	as	a	moment	of	force	along	
that	axis.	In	the	given	configuration,	where	the	plane	xz	normal	to	the	page	is	a	
symmetry	plane	of	the	spheroid,	the	force	over	each	differential	element	of	volume	
has	no	component	normal	to	plane	yz.	The	appearance	of	this	force	is	a	common	
experimental	fact	for	all	potential	energies	as	Fe.	This	is	similar	to	what	happens	
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with	a	mass,	where	the	that	tends	to	bring	it	to	the	position	of	minimum	
gravitational	potential	energy	is	the	force	distributed	over	all	its	volume	that	we	
call	weight.	It	is	discussed	next	the	relationship	between	the	force	couple	and	the	
variation	of	the	free	energy.	

	
Figure	19.	Torque	exerted	on	ellipsoid	in	applied	field.	

At	the	right	of	the	figure !!

f (r ) 	is	the	force	over	the	element	of	volume	dV	at	 !r ,	

where	r	is	the	distance	to	the	rotation	axis	z.	Angle	ϕ		is	the	usual	one	of	spherical	
coordinates	and	the	force	has	been	decomposed	in	its	tangential	and	radial	
components	fϕ		and	fr.	The	work	dW	done	on	the	body	when	it	rotates	dϕ	towards	
the	direction	of	stable	equilibrium	is	

	
		
dW = −dϕ fϕrd

3r
V
∫∫∫ = −τ dϕ = dFe , 	 (5.16)	

where	τ	is	the	torque	exerted	on	the	body	along	its	suspension	axis	(see,	for	
instance,	eq.	5.23).	Therefore	

	
		
τ = −

dFe
dϕ

. 	 (5.17)	

Torque	exerted	on	an	ellipsoid	and	the	state	of	equilibrium	
In	what	follows	a	discussion	is	made	of	the	problem	of	equilibrium	and	the	force	

couples	exerted	on	ellipsoidal	bodies	made	with	different	kinds	of	materials	and	
subject	to	static	electric	and	magnetic	fields.	

Dielectrics	

Permanent	polarization		
The	analysis	is	made	here	of	the	equilibrium	configuration	of	a	permanent	

polarization	in	the	absence	of	applied	field.	In	such	case	the	electrostatic	
contribution	to	the	energy,	eq.	5.9,	becomes	(see	eq.	2.12)	
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Fe =

V
2λ
!
EP i ε0

!
EP +λ

!
P( ) = − λV

2ε0
Nα (1−Nα )P2α

α
∑ . 	 (5.18)	

As	an	illustration,	the	minimization	of	energy	will	be	analized	for	the	case	of	
spheroids,	where 	

	

		

Fe = −
λV
2ε0

CeP
2
e +CpPp

2( ) , where
Ce =Ne 1−Ne( ) ,Np =1−2Ne ,Cp =2Ne 1−2Ne( ) ,

	 (5.19)	

where	subindices	p	and	e	identify	the	polar	and	equatorial	components	or	
eigenvalues,	respectively	and	the	trace	rule	eqs.	3.15	was	used.	Figure	20	shows	
their	values	in	a	range	that	includes	the	right	circular	cylinder	of	infinite	length	
(point	A)	to	the	sphere	(point	B).	The	sheet	of	constant	thickness	and	infinite	
extension,	not	seen	here,	has	the	Np	=	1.	The	vertical	line	at	Ne	=	1/3	is	the	
boundary	of	the	regions	of	prolate	and	oblate	spheroids.	

	
Figure	20.	

 !!N ,C y C⊥
	as	functions	of	!!N⊥

.
	

For	oblate	spheroids	the	largest	coefficient	is	Cp	so	that	free	energy	reaches	its	
maximum	negative	value	when	the	polarization	lies	on	the	plane	of	largest	
semiaxes,	the	equatorial	ones.	For	prolate	spheroids	the	largest	coefficient	is	Ce	
corresponding	to	the	polar	component	(here	the	largest	semiaxis),	and	the	
polarization	tends	to	align	along	that	direction.	For	the	sphere	the	polarization	has	
no	prefered	alignment	because	the	coefficientes	are	the	same	for	all	components	of	
polarization.	



Carlos	E.	Solivérez	108	

	

The	total	free	energy	is	not	the	expression	customarily	used	for	this	sort	of	
problem	as	it	may	be	simplified	eliminating	the	 !


EP i

EP 	(see,	below,	the	analogous	

case	of	permanente	magnetization),	pero	the	obtained	result	is	correct.	

Induced	polarization	
According	to	Stratton146,	the	torque	 


τ 	exerted	in	the	linear	case	by	the	fixed	

field	 !!

E0on	an	isotropic	dielectric	body	when	its	orientation	is	not	the	one	of	

minimum	free	energy,	is	obtained	from	the	following	interaction	energy,	

	

 		

F'e = −
1
2

!
P i
!
E0d3r

V
∫∫∫ = −

Vε0χe

2λ Eα
intEα

0

α
∑ = −

Vε0χe

2λ να Eα
0( )2

α
∑ ,

where να =
1

1+ χeNα

,
	 (5.20)			

where	eq.	2.33	was	used.	The	moment	of	distributed	forces	is	then147	(see	eq.	
2.34):	

	
 			
!
τ = !p×

!
E0 , !p = ε0

λ
α e i
!
E0 , α e =V χ e i 1+N i χ e( )−1 . 	 (5.21)	

For	an	isotropic	dielectric		

	

 			

αe =V χe 1+N i χe( )−1 =V χe

1
1+ χeNa

0 0

0 1
1+ χeNb

0

0 0 1
1+ χeNc

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

. 	 (5.22)	

When	the	applied	field	has	no	z	component,	as	in	Figure	19,	the	only	torque	
component	is	

	
 		
τ z =

ε0
λ
χ 2
eV

Nc −Nb

1+ χeNb( ) 1+ χeNc( )sin2ϕ
!
E0 i
!
E0. 	 (5.23)	

The	general	case	of		spheroids	is	discussed	at	Problem	38.	For	triaxial	ellipsoids	
with	semiaxes	order	a	>	b	>	c,	the	order	of	the	principal	values	is	Nc	>	Nb	and	the	
force	couple	has	positive	sign,	corresponding	to	a	rotation	that	tends	to	align	the	
largest	semiaxis	with	the	field.	This	orientation	is	the	one	of	minimum	energy,	as	
may	be	verified	from	the	expression	of	F 'e	initially	written.		

																																																								

	
146	 Stratton,	p.	113	eq.	51.	
147	 Compare	with	Stratton,	p.	216	eq.	53.	
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Anisotropic	susceptibility	
The	electric	susceptibility	of	uniaxial	crystals	has	—in	its	principal	system	of	

coordinates,	that	in	general	does	not	coincide	with	that	of	the	body—	the	following	
expression	(see	Appendix	5):	

	

 		

χe =

χ⊥ 0 0
0 χ⊥ 0
0 0 χ

!

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

. 	 (5.24)	

The	microscopic	origin	of	this	anisotropy	is	not	discussed	here,	but	has	a	similar	
origin	as	that	of	the	two	polarizable	atoms	analyzed	at	page	21,	with	the	additional	
complexity	introduced	by	the	regular	order	of	a	crystal	lattice.	
The	force	couple	exerted	on	a	spherical	body	of	that	material	—that	is,	without	

shape	anisotropy—	does	not	determine	the	two	components	but	its	difference,	as	
discussed	next	
From	eqs.	2.33	and.	3.66,	the	components	of	the	internal	field	and	the	

polarization	in	the	principal	system	of	coordinates	of	the	susceptibility	tensor	are:	

	
		
Eα
int =

E0
α

1+ χα /3
, Pα = χαEα

int =
χαE

0
α

1+ χα /3
. 	 (5.25)	

Because	of	the	rotational	symmetry	of	the	susceptibility,	the	experiment	must	be	
done	on	the	plane	that	contains	the	symmetry	axis	and	the	applied	field.	When	
descomposing	all	vectores	in	their	components	parallel	and	perpendicular	to	that	
axis,	the	internal	field	is	give	by	

	
 		
E⊥
int =

E0
⊥

1+ χ⊥ /3
, E

!
int =

E0
!

1+ χ
!
/3. 	 (5.26)	

Upon	replacement	in	the	expression	for	the	free	energy	eq.	5.20	it	is	obtained	

	

 		

F 'e = −
1
2

!
P i
!
E0d3r

V
∫∫∫ = −

ε0
2λV χαEα

intEα
0

α
∑

= −
ε0
2λV χ⊥

E0
⊥( )2

1+ χ⊥ /3
+ χ

"

E
"
0( )2

1+ χ
"
/3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= −

ε0
2λV

E0
⊥( )2

1/ χ⊥ +1/3
+

E
"
0( )2

1/ χ
"
+1/3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.
	 (5.27)	

F	'e	is	minimum	along	the	directions	with	maximum	susceptibility.	For	 
χ

> χ⊥ 	

the	minimum	is	obtained	when	the	symmetry	axis	is	parallel	to	 		
!
E0. 	For	

 !χ < χ⊥ , 	
the	minimum	is	obtained	when	the	symmetry	axis	is	normal	to	the	field.	Although	
at	first	sight	this	appears	indistinguisable	from	a	shape	anisotropy,	it	is	not	so	(see	
Problem	02).	The	calculation	of	the	torque	exerted	by	the	applied	field	on	the	body	
is	done	at	Problem	39.	
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Magnetic	materials	

Permanent	magnetization	
The	magnitude	of	the	spontaneous	magnetization	is	usually	constant	at	constant	

temperature,	independently	of	its	orientation	respect	to	the	crystal	axes148,149.	One	
may	then	compute	the	energy	of	spontaneously	magnetized	matter	assuming	
invariable	the	magnitude	of	the	microscopic	magnetic	moments.	This	calculation	
—which	does	not	include	the	energy	necessary	for	building	up	the	magnetic	
atomic	and	molecular	moments—	gives150,151	

	
 		
Fm = −

µ0
2

!
H int(!r )i !M(!r )d3r

V
∫∫∫ . 	 (5.28)	

For	a	uniformly	magnetized	ellipsoidal	body	eq.	2.44	gives	

	  			
!
H int = −λ 'N i

!
M. 	 (5.29)	

Therefore	

	
 			
Fm = −

µ0
2 V
!
H int i

!
M =

µ0λ '
2 V

!
M iN i

!
M , 	 (5.30)	

expression	that	should	be	minimized	with	the	condition	of	constant	M.	In	the	
principal	system	of	coordinates	of	N	the	spherical	components	of	 !


M 	are	

	 		Mx =Msenθ cosϕ , My =Msenθ senϕ , Mz =Mcosθ . 	 (5.31)	

Therefore	

	

		

Fm =
µ0λ '
2 V Nα

α
∑ M2

α

=
µ0λ '
2 V Nx sen2θ cos2ϕ +Ny sen2θ sen2ϕ +Nz cos2θ( )M2 ,

	 (5.32)	

should	be	minimized.		
The	minimum	is	easily	found	realizing	that	the	parenthesis	is	the	parametric	

equation	
	 		X = Nx senθ cosϕ , Y = Ny senθ senϕ , Z = Nz cosθ , 	 (5.33)	

of	the	ellipsoid		

	

		

X 2

Nx( )2
+ Y 2

Ny( )2
+ Z2

Nz( )2
=1, 	 (5.34)	

																																																								

	
148	 Kittel,	p.	533.	
149	 Landau	and	Lifchitz,	p.	146.	
150	 Chikazumi,	p.	24	eq.	1.95.	
151	 Stratton,	p.	130	eq.	63.	
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whose	square	radius	vector	R152	has	to	be	maximized.	The	minimum	value	of	R2	is	
obtained	along	the	axis	corresponding	to	the	smallest	denominator,	that	is,	the	
direction	of	the	ellipsoid’s	largest	semiaxis	(see	eq.	4.6).	
This	property	of	permanently	magnetizated	prolate	spheroids	explains	the	

stability	of	the	magnetization	of	a	compass’s	needle	.	In	this	case	there	is	no	torque	
applied	on	the	body,	but	an	irreversible	rotation	of	magnetization	(hysteresis)	that	
aligns	it	in	the	direction	of	minimum	isothermal	and	isobaric	free	energy.	Such	a	
body	has	a	permanent	magnetic	dipole	moment	given	among	eqs.	2.49	and	its	
direction	is	that	of	the	polar	semiaxis.	At	constant	temperature	the	magnetization	
of	the	spheroid	may	be	considered	to	be	fixed	because	in	the	presence	of	low	
magnetic	fields	like	the	terrestrial	one,	the	induced	magnetization	is	much	lower	
than	the	spontaneous	or	permanent	one153.	For	such	a	case154	the	free	energy	of	
interaction	with	an	applied	field	and	the	force	couple	are	

	  		Fm = − !mi
!
B0 , !τ = !m×

!
B0. 	 (5.35)	

These	expressions	do	not	required	further	análisis,	as	Fm	is	a		minimum	when	 !
m 	

has	the	same	direction	and	sense	than !!

B0 ,	orientation	generated	by that	vanishes	

when	both	vectors	are	parallel.	

Induced	magnetization	
For	the	calculation	of	the	interaction	energy	of	spontaneous	electric	or	magnetic	

polarizations	it	is	not	necessary	to	include	the	energy	of	its	creation.	It	is	not	so	for	
induced	polarizations,	where	the	required	expression	of	the	free	energy	is155	

	  		
Fm = −

µ0
2

!
H0(!r )i !M(!r )d3r

V
∫∫∫ = −

µ0
2 V
!
M i
!
H0 = −12

!mi
!
B0 , 	 (5.36)	

because	both	vectors	are	uniform	(see	page	6).	
The	torque	exerted	by	the	magnetic	induction	field	over	the	ellipsoidal	body	is	

then	given	by	(see	eq.	2.49)	

	
 			
!
τ = !m×

!
B0 , !m= 1

λ 'αm i
!
H0 , αm =V χm i 1+N i χm( )−1 . 	 (5.37)	

																																																								

	
152	 Radius	vector	is	the	distance	of	a	surface’s	point	to	its	center.	
153	 Chikazumi,	p.	439.	
154	 Jackson,	p.	150.	The	factor	1/2	is	not	present	when	the	moment	and	the	field	are	“rigid”	or	

fixed.	
155	 Stratton	pp.	128	eq.	51	and	154	eq.	7.	An	illuminating	discussion	of	the	subject	is	made	by	M.	S.	

Plesset	and	G.	Venezian	(Am.	J.	Phys.	vol.	32,	pp.	860-864,	1964),	where	the	calculation	is	made	
of	the	torque	applied	on	an	ellipsoidal	body	with	induced	magnetization.	See	also	S.	P.	Puri,	Am.	
J.	Phys.	vol.	33,	p.	472,	1965.	

 

τ
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Magnetic	torque	experiments	
Figure	21	shows	the	main	parts	of	

a	goniometer,	device	that	can	measure	
with	good	precission	the	force	couples	
exerted	by	an	applied	magnetic	field	
over	a	magnetized	body.	The	
instrument	is	based	on	a	calibrated	
torsion	wire	that	can	be	rotated	in	
order	to	return	a	reflected	light	beam	
to	its	zero	(position	in	the	absence	of	
applied	field).	The	glass	tube	blocks	
air	currents	that	may	displace	the	
body.	The	paddles	immersed	in	oil	are	
adjusted	in	size	and	shape	in	order	to	
provide	critical	damping	for	a	fast	
return	to	zero.	

	
Figure	21.	Elementary	measurement	

	of		magnetic	force	couples.	

For	the	isotropic	case	the	force	couple	reduces	to	

	
 			
!
τ = !m×

!
B0 =

µ0
λ 'Vχm

!
H0 i 1+ χmN( )−1 i

!
H0. 	 (5.38)	

In	the	ellipsoid’s	principal	system	of	coordinates	the	components	are	given	by	

	

		
τ x =

µ0χ
2
mV

λ '
Nc −Nb

1+ χmNb( ) 1+ χmNc( )( )
⎛

⎝
⎜

⎞

⎠
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0Hz
0 , 	 (5.39)	

	

		
τ y =

µ0χ
2
mV

λ '
Na −Nc

1+ χmNa( ) 1+ χmNc( )( )
⎛

⎝
⎜

⎞

⎠
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0Hz
0 , 	 (5.40)	

	

		
τ z =

µ0χmV
λ '

Nb −Na

1+ χmNa( ) 1+ χmNb( )( )
⎛

⎝
⎜

⎞

⎠
⎟Hx

0Ht
0. 	 (5.41)	

Both	for	the	paramagnetic	(𝜒m >	0)	and	the	diamagnetic	(𝜒m <	0,	| 𝜒m	|	≪	1)	case		
denominators	are	positive	numbers	and	the	sign	is	determined	by	the	difference	of	
principal	values.	When	the	applied	field	has	only	y,	z	components,	the	treatment	is	
similar	to	that	given	for	the	electric	one,	eq.	5.23.	The	torque	tends	then	to	align	
the	largest	semiaxes	(a	in	our	convention)	with	the	applied	field,	both	in	the	
paramagnetic	and	diamagnetic	case.		

Conductors	

The	energy	of	a	surface	charge	distribution	on	a	conductor	with	net	charge	Q	is	
given	by	the	next	equation156.	
																																																								

	
156	 Stratton,	p.	107	eq.	16.	
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Fe =

1
2λ φσ (!r )d2r

S
"∫∫ = 1

2λ φS σ(!r )d2r
S
"∫∫ = 1

2λ φSQ =0. 	 (5.42)	

The	result	is	obtained	by	computing	the	work	done	by	bringing	the	charges	
from	infinite	distances	to	a	conductor	at	potential	φS	until	the	total	charge	Q	is	
build	up.	The	formula	is	not	valid	for	the	separation	of	charges	over	the	surface	of	
an	ellipsoid	with	zero	net	charge.	Classical	texts	on	electromagnetism,	like	those	of	
Stratton	and	Jackson,	restrict	their	analysis	to	conducting	bodies	with	non	
vanishing	net	charge	where	the	previously	given	shape-independent	formula	is	
valid.	The	exception	is	that	of	Landau	and	Lifshitz,	who	compute	the	following	
value	for	the	interaction	energy	of	a	zero	net	charge	conductor	with	an	applied	
electrostatic	field:	

	
 		
Fe = −

1
2
!p i
!
E0 , 	 (5.43)	

where 	
!p 	is	the	electric	dipole	moment	of	the	body.	For	ellipsoidal	conductors	this	

moment	is	given	by	eq.	2.60,	so	that	in	the	principal	system	of	coordinates	

	
 			
Fe = −

1
2
!
E0 i
!p = −

ε0V
2λ
!
E0 iN −1 i

!
E0 = −

ε0V
2λ

1
Nα

Eα
0( )2

α
∑ , 	 (5.44)	

coinciding	with	eq.	2.14	of	Landau	&	Lifshitz.	
The	expression	for	the	force	couple	exerted	over	a	conducting	ellipsoid	is	the	

one	for	a	dielectric,	eq.	5.21,	in	the	limit	of	infinite	susceptibility	(see	Problem	08).	
It	is	thus	obtained	

	
		
τ x =

ε0V
λ

Nc −Nb

NbNc

E y
0Ez

0 , τ y =
ε0V
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Ex
0Ez
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0 . 	 (5.45)	

When	the	three	depolarization	factors	are	equal	—that	is,	for	spheres—	the	
force	couple	vanishes,	as	corresponds	to	its	shape	isotropy.	When	all	three	are	
different,	as	in	triaxial	ellipsoids,	the	force	couple	tends	to	align	the	largest	
semiaxis	with	the	field,	as	happens	in	the	dielectric	and	magnetic	case.	

Superconductors	

As	in	the	case	of	conductors,	the	force	couple	exerted	by	the	applied	field	on	a	
superconducting	body	may	be	derived	from	the	case	of	induced	magnetization,	
eq.	5.37,	using	the	condition	of	perfect	diamagnetism	!!χm = −1 	(see	eq.	2.73).	

		
 			
!
τ = !m×

!
B0 , !m= 1

µ0λ '
α s i
!
B0 , α s = −V 1−N( )−1 . 	 (5.46)	

A	typical	component	is	

	
		
τ x =

V
µ0λ '

Nz −Ny

1−Ny( ) 1−Nz( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
By
0Bz

0 , 	 (5.47)	
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where	the	other	components	are	obtained	from	a	cyclic	permutation	of	indices.	

For	finite	volume	ellipsoids	the	denominator	is	always	positive	and	the	
behaviour	of	a	superconductor	body	is	the	same	as	that	of	a	magnetized	one,		with	
the	minimum	energy	obtained	when	the	largest	semiaxis	is	aligned	with	the	
applied	field.	Degenerate	ellipsoids	—as	the	sheet	of	infinite	extension	and	the	
ellyptic	cilinders—	are	not	valid	cases	for	the	analysis	of	torques	that	there	diverge	
with	volume.	

Force	on	an	ellipsoid	in	a	non-uniform	field	
The	depolarization	tensor	method	has	few	advantages	for	the	treatment	of	the	

forces	exerted	by	non-uniform	fields	on	ellipsoids.	Nevertheless,	due	to	its	
experimental	relevance,	the	expressions	are	given	of	the	forces	exerted	on	
polarized	dielectric	and	magnetic	ellipsoids	in	quasi-uniform	fields157,158:	

	

 		

!
fe =V

!
P i∇( ) !E0(!r )= !p i∇( ) !E0(!r )=

ε0
λ
!
E0(!r )iα e i∇( ) !E0(!r ),

!
fm =V

!
M i∇( ) !B0(!r )= !mi∇( ) !B0(!r )= 1

µ0λ '
!
B0(!r )iαm i∇( ) !B0(!r ).

	 (5.48)	

where	the	body’s	polarizability	tensors,	eqs.	2.33	and	2.49,	have	been	used.	
The	variation	of	the	field	inside	the	body	should	be	small	enough	so	that	the	

depolarization	tensor	method	is	valid	within	the	acceptable	range	of	error.	At	the	
same	time,	the	variation	should	be	large	enough	so	that	the	total	force	is	
measurable.	Experiments	of	this	type159	make	possible	measurements	of	
diamagnetic	susceptibility	that	are	imposible	with	the	torsion	method	(see	
Magnetic	torque	experiments	at	page	112).	This	is	so	because	of	the	small	value	of	
this	kind	of	susceptibility	and	the	fact	that	torques	are	proportional	to	its	square;	
force,	on	the	other	hand,	is	directly	proportional	to	the	susceptibility.	

Infinite	and	infinitesimal	bodies	
Equation	3.80	shows	that	similar	ellipsoids	have	equal	internal	depolarization	

tensors	N.	Therefore,	if	one	makes	all	semiaxes	grow	without	limit	preserving	their	
relative	values,	N	does	not	change.	One	must	then	be	careful	with	the	use	of	bodies	
of	infinite	or	indefinite	extension,	subterfuge	often	used	for	the	introduction	of	
dielectric	or	magnetic	material	surrounding	finite	bodies,	unless	one	specifies	their	
shape.	These	idealizations	are	justified	only	if	they	provide	a	good	approximation	
to	a	real	situation,	that	usually	involves	finite	bodies.	The	sphere	of	infinite	
diameter	can	be	used	to	approximate	an	isotropic	dielectric	environment,	but	one	
has	still	to	discuss	the	effect	of	the	cavity	that	contains	the	finite	body	of	interest.	
The	elliptic	cylinder	of	infinite	length	provides	a	good	approximation	to	the	more	

																																																								
	

157	 Landau	and	Lifchitz,	p.	72	eq.	16.12.	
158	 Landau	and	Lifchitz,	p.	144	eq.	34.8.	
159	 Faraday's	method,	see	H.	Zjilstra,	Experimental	Methods	in	magnetism,	vol.	2,	North	Holland	

Publishing,	1967,	p.	94.	
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complex	calculation	of	the	field	near	the	equator	of	a	triaxial	ellipsoid,	but	there	
are	better	aproximations	than	the	sheet	of	infinite	extension	to	the	field	near	the	
poles	of	a	very	flat	oblate	spheroid	(see	eq.	4.29).	
Polarized	matter	creates	fields	in	two	different	ways:	by	the	space	variation	of	

polarization	inside	the	body’s	volume	and	by	the	step	discontinuity	through	the	
body’s	surface160.	For	uniform	polarizations	as	the	ones	studied	here,	only	the	
second	effect	appears,	as	illustrated	for	the	electric	case	by	eq.	2.51,	

	
 		
!
E(!r )= !E0 −k1∇

σ (!r ')
!r − !r'

d2r'
S
"∫∫ . 	

The	contribution	to	the	field	of	surface	element	dS	is	σ  dS/r	2	=	σ	d𝛺		(notice	that	
the	gradient	increases	in	1	the	exponent	of	the	denominator),	where	d𝛺	is	the	
subtended	element	of	solid	angle.	Therefore,	the	contribution	of	a	surface	sector	to	
the	field	at	an	internal	point	is	proportional	to	the	subtended	solid	angle.	This	is	
illustrated	by	the	infinite	sheet	and	elliptic	cylinder,	where	the	depolarization	
factors	(principal	values)		vanish	for	the	directions	where	the	solid	angle	tends	to	0	
(the	semiaxis	tends	to	∞).	That	is,	very	large	distances	do	not	ensure	very	small	
contributions	from	the	surface	sector	to	the	field,	that	depends	on	the	solid	angle	
subtended	by	that	sector.	Although	at	large	distances	r	the	field	of	a	finite	polarized	
body,	whatever	its	shape,	has	a	distance	dependence	of	r	-3	(see	section	Near	and	
far	away	point	approximations	to	next),	far	away	surface	charges	do	not	have	this	
behaviour.		

From	the	mathematical	point	of	view	the	problems	with	bodys	of	infinite	
extension	originate	when	the	value	of	the	integral	

	
 		

d3r '
!r− !r 'V

∫∫∫ 	 (5.49)	

is	computed	by	extending	V	over	all	space.	A	careful	analysis	shows	that	the	
integral	is	semi-convergent,	that	its	value	when	volume	V	grows	depends	on	the	
peculiar	way	the	infinite	limit	is	taken161.	An	infinite	number	of	different	limits	
may	exist	depending	on	the	shape	of	V,	as	illustrated	by	the	property	eq.	3.80	of	the	
depolarization	tensor.	
The	same	error	of	assuming	all	infinite	bodies	to	be	equal	has	been	made	with	

infinitesimal	ones.	The	Fermi	contact	term	is	a	little	known	contribution	to	the	
energy	of	atomic	electrons	originated	in	its	interaction	with	the	nucleus.	Its	
calculation	was	made	considering	the	nucleus	to	be	a	point	charge,	implicitly	
spherical.	The	term	contains	an	integral	that	this	author	proved	to	be	of	the	
internal	depolarization	tensor	type162,	thus	requiring	a	better	specification	of	the	
nuclear	charge	distribution.	Similar	errors	are	repeatedly	made	in	the	calculations	
																																																								
	

160	 Reitz,	p.	79	eqs.	4.13	and	4.14.	
161	 MacMillan,	pp.	163-165.	
162	C.	E.	Solivérez;	The	contact	hyperfine	interaction:	an	ill	defined	problem;	J.	Phys.	C:	Solid	St.	Phys.	

vol.	13;	pp.	L1017-	L1019;	1980.	
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of	microscopic	fields	in	crystals	when	series	of	dipolars	are	numerically	summed	
withour	analyzing	its	kind	of	convergence.	

Cavities	

Standard	treatment	
Cavities	have	had	a	distinguished	role	in	the	theory	of	electricity	since	Lord	

Kelvin	used	them	to	define	 !

E 	and	 !


D 163.	The	problem	is	that	they	are	treated	as	

ellipsoidal	bodies	with	their	same	properties164,	or	as	if	the	extraction	of	an	
ellipsoidal	piece	of	a	uniformly	polarized	body	dos	not	modify	the	uniform	internal	
fields.	Stratton,	without	previous	discussion,	treats	cavities	as	if	they	were	bodies	
of	the	same	shape	with	the	dielectric	permittivity	of	vacuum165.	Another	reputed	
author	is	more	explicit	when	he	states166:	

Finally	we	consider	the	field	inside	a	cavity	in	a	material	magnetized	to	
an	intensity	I	(Fig.	1.16).	The	free	pole	distribution	on	the	surface	of	the	
cavity	is	the	same	as	that	on	the	surface	of	a	solid	body	with	the	same	
shape	as	the	cavity,	and	with	the	same	magnetization	as	the	material	
surrounding	the	cavity,	except	that	the	poles	are	of	opposite	sign.	This	
must	be	true,	because	if	we	superpose	the	body	and	the	hole,	we	
have	a	uniformly	magnetized	solid	without	free	poles.	

As	previously	stated	the	argument	in	bold	type	is	true	for	uniform	polarization,	
where	the	only	contribution	to	the	field	comes	from	surface	polarization	
charges167.	But	this	can	only	be	equal	to	the	polarization	on	the	cavity’s	walls	when	
the	polarization	is	fixed	(rigid,	as	some	authors	call	it),	which	is	false.	
Jackson	explicitly	solves	the	spherical	cavity168	but	he	replaces	in	the	solution	

for	the	sphere	the	electric	permittivity	by	its	inverse	with	the	pseudo-argument:	
In	fact,	inspection	of	boundary	conditions	(4.56)	shows	that	the	results	from	the	
cavity	can	be	obtained	from	those	for	the	sphere	by	the	replacemente	ε	→	1/ ε.		

The	alluded	boundary	conditions	are	the	continuity	of	the	tangential	component	of	
the	electric	field	through	the	cavity’s	surface	and	the	step	discontinuity	of	its	
normal	component	due	to	the	polarization	charges	eq.	3.35.	In	addition,	he	does	
not	specify	the	shape	of	the	dielectric	body	where	the	cavity	is	made.	

Van	Vleck169,	a	reputed	specialist	on	the	properties	of	polarized	matter,	makes	
use	of	cavities	for	the	calculation	of	local	fields,	but	his	cavities	are	virtual,	not	real,	
a	mere	artifact	for	promoting	fruitful	discussions.	This	is	the	case	of	the	so	called	
Lorentz	sphere,	“cavity”	used	to	estimate	the	internal	or	local	electric	field	at	the	

																																																								

	
163	 See,	for	instance,	Stratton,	p.	214;	Reitz,	p.	82.	
164	 Stratton,	pp.	206	and	213.	
165	 Stratton,	p.	206	eq.	31.	
166	  Chikazumi,	p.	16.                                                                                                                                                                                                                                                                                                                                                                                                                  	
167	 Reitz,	p.	79	eqs.	4.13	and	4.14.	
168	 Jackson,	pp.	114-115.	
169	 Van	Vleck,	chapter	IV,	analizes	classsical	calculations	of	fields	inside	cavities.	
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molecules	of	a	dielectric170,	magnitude	different	from	the	macroscopic	field	in	
Maxwell’s	equations.	The	“cavity”	is	not	empty	but	filled	with	molecules	whose	
field	and	polarization	are	to	be	computed	individually	according	to	their	known	
crystalline	positions.	

The	analysis	made	at	section	Induced	electric	polarization	of	two	interacting	
atoms	illustrates	the	mutual	influence	of	different	portions	of	matter	on	the	final	
polarization	state.	Polarization	is	not	automatically	uniform,	nor	it	remains	forever	
fixed	when	this	state	is	achieved.	Shape	efects	are	crucial	and	only	closed	single	
surfaces	of	the	second	degree	(ellipsoids)	have	been	proved	to	be	amenable	of	
uniform	polarization.		It	is	therefore	clear	that	the	following	two	aspects	have	to	be	
carefully	analyzed:	
1.	 The	effect	of	the	removal	of	material	inside	the	ellipsoidal	body	on	the	
polarization	state	of	the	rest	of	the	body.	

2.	The	effect	of	the	polarization	charges	or	currents	on	the	cavity’s	walls	over	the	
fields	inside	the	cavity	and	the	remaining	polarized	matter.	
It	should	also	be	stressed	that	a	uniform	applied	and	total	field	inside	the	body	

is	required,	but	this	is	a	necessary	condition	and	not	a	a	sufficient	one.	

Some	specific	cavities:	or	homoeoids	

A	cavity	is	the	result	of	the	remotion	of	a	volume	V0	of	polarized	matter	from	a	
larger	one	V.	The	simplest	assumption	is	that	both	pieces	have	ellipsoidal	shape,	so	
that	they	can,	in	principle,	be	uniformly	polarized.	The	integral	from	which	the	
depolarization	tensor	is	to	be	calculated	(see	the	definition	eq.	3.4)	is		

	
 		
I '(!r )= d3r '

!r − !r'V−V0

∫∫∫ = d3r '
!r − !r'V

∫∫∫ − d3r '
!r − !r'V0

∫∫∫ = I(!r )− I0(
!r ), 	 (4.50)	

where	a	well	known	mathematical	property	of	integrals	was	used.	Using	the	
definition	eq.	3.4	one	may	derive	from	it	the	following	mathematical	relationship	 	

	  			n'(
!r )= n(!r )−n0(

!r ), 	 (5.51)	

where	n	is	the	depolarization	tensor	of	the	ellipsoidal	body	of	volume	V	and	n0	the	
one	of	V0.	This	seems	to	reduce	the	problem	of	fields	to	a	an	algebraic	combination	
of	known	cases,	but	it	is	not	so.	The	superposition	principle	applies	to	rigid	
distributions	of	charges,	dipoles	or	currents,	but	not	to	induced	polarizations.	
Although	this	should	be	clear	enough,	it	is	best	to	solve	some	specific	case	to	
illustrate	the	argument,	what	is	done	next.	

Shells	or	homoeoids	are	one	of	the	most	symmetric	case	of	cavities,	when	the	
removed	ellipsoidal	region	V0	is	concentric	to	a		similar	ellipsoid	with	proportional	
corresponding	semiaxes.	If	the	first	of	the	equations	below	describes	the	body’s	
surface	and	the	second	one	the	surface	of	the	cavity,	they	determine	an	homoeoid	
or	shell:	
																																																								

	
170	 Dekker,	pp.	141-144.	
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a2
+ y

2

b2
+ z

2

c2
= k2 , where 0< k <1. 	 (5.52)	

Homoeoids	have	been	intensively	studied	in	the	theory	of	gravitational171	and	
electromagnetic	potentials	because	they	have	the	interesting	property	that	the	
potential	is	constant	inside	the	shell,	that	is,	internal	fields	vanish	as	inside	
conductors	but	this	may	not	apply	to	polarization	fields.	

Problem	28	solves	the	simple	case	of	an	spherical	shell	using	the	electrostatic	
Gauss’s	Law.	The	values	of	the	auxiliary	function 		f (

!r )given	by	eq.	6.72	show	that	in	
none	of	the	three	regions	depicted	by	Figure	24	it	is	a	quadratic	function	of	
coordinates.	Therefore,	nowhere	may	a	depolarization	tensor	be	defined	and,	
presumably,	no	uniform	internal	field	and	polarization	may	be	found.	This	does	not	
rule	out	the	possibility	that	the	field	inside	the	cavity	is	uniform,	it	only	shows	that	
the	depolarization	tensor	method	is	not	the	appropiate	one	to	make	the	
calculation.	
If	its	cavities	are	small	enough,	the	polarization	of	an	allipsoidal	body	will	have	

small	departures	from	that	calculated	from	its	depolarization	tensor.	The	reason	is	
that	the	change	in	the	field	external	to	the	cavity	is	proportional	to	its	dipole	
moment,	that	is	to	the	cavity’s	volume.	The	field	around	the	cavity,	on	the	other	
hand,	would	be	very	different	from	the	one	in	its	absence.	The	most	common	error	
made	with	the	treatment	of	cavities	is	the	assumption	that	the	polarization	of	the	
surrounding	matter	remains	inalterable,	fixed,	which	is	false	without	doubt.	

	Thin	shells	and	the	dipole	layer	
The	lack	of	uniformity	in	the	body’s	interior	does	not	appear	in	an	

infinitesimally	thin	shell,	where	the	body	is	reduced	to	a	double	sided	surface,	case	
that	is	now	analyzed.	The	case	of	the	spherical	homoeoid	is	analized	here	(see	
problem	Problem	28),	where	for	the	three	different	regions	it	is	obtained	
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171	 A.	Gray,	On	the	Attractions	of	Spherical	and	Ellipsoidal	Shells,	Proc.	Edinburgh	Math.	Soc.	vol.	23,	

pp.	91-100	(1913-1914).	
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Taking	the	limit	R2	 →	R1	in	eqs.	5.54	and	5.55	it	is	obtained	
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The	expression,	valid	for	all	thin	ellipsoidal	homoeoids	(see	Problem	42),	shows	
that	the	depolarization	tensor	of	a	thin	shell	is	reduced	to	the	discontinuity	
through	the	ellipsoid’s	surface	eq.	3.38.	Its	utility	has	yet	to	be	asessed.	
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Chapter	6:	
Selected	problemas	

Electric	polarization	

Problem	01:	Autoconsistent	electric	polarization	of	two	atoms	

Two	identical	and	isotropic	atoms,	with	no	permanent	electric	dipole	moment,	
are	a	distance	d	apart	and	immersed	in	a	uniform	electric	applied	field.	Asumming	
that	the	induced	dipole	moments	are	proportional	to	the	total	electric	field	at	each	
atom,	calculate	their	values	using	the	point	dipole	model.	

Solution	

See	section	Induced	electric	polarization	of	two	interacting	atoms.	

Problem	02:	Shape	or	crystalline	anisotropy?	

In	a	laboratory,	a	student	made	an	experimental	determination	of	the	two	
coefficients	 	that	relate	the	electric	polarization	with	the	applied	field	for	an	
ellipsoid:	

	
 		
λ
ε0
P⊥ = c⊥E⊥

0 , λ
ε0
P
!
= c

!
E
!
0. 	 (6.1)	

The	absent	minded	student	that	made	the	measurements	forgot	to	register	to	
which	of	the	two	following	bodies	they	correspond:	1)	an	isotropic	dielectric	
spheroid;	2)	a	uniaxial	dielectric	sphere	(see	Appendix	5	at	page	165).	A	large	
amount	of	time,	work	and	resources	were	used,	so	it	is	highly	desirable	to	find	a	
way	to	identify	the	right	body.	Is	it	possible	to	differentiate	between	the	two	cases	
without	repeating	the	measurements?	

Solution	
In	the	principal	system	of	coordinates	of	a	spheroid,	the	electric	polarization	of	

an	isotropic	material	with	susceptibility	χ	placed	in	a	uniform	field	has	the	
following	components	(see	eq.	2.33)	

	
 		
λ
ε0
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1+N⊥χ
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!
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!
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!
E0
!
. 	 (6.2)	

As	the	values	
 !!N⊥ ,N 	of	the	spheroid	may	be	easily	computed,	each	equation	

provide	a	value	of	χ,	
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1−N⊥c⊥
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!
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c
!
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!
c
!

. 	 (6.3)	

 !
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If	
 
χ⊥ = χ

!
= χ 	the	problem	is	solved.	

Otherwise	the	expressions	for	a	uniaxial	dielectric	sphere	have	to	be	solved.	In	
the	susceptibility	tensor’s	principal	system	the	equations	are	

	
 		
λ
ε0
P⊥ =

χ⊥

1+ χ⊥ /3
E0

⊥ = c⊥E
0
⊥ ,

λ
ε0
P
!
=

χ
!

1+ χ
!
/3E

0
!
= c

!
E0
!
. 	 (6.4)	

The	eigenvalues	are	

	
 		
χ⊥ =

c⊥
1− c⊥ /3

, χ
!
=

c
!

1− c
!
/3 , 	 (6.5)	

where	the	coefficients	c	cannot	be	equal.	The	susceptility’s	eigenvalues	have	the	
same	order	as	the	coefficients.	
Therefore,	the	shape	anisotropy	of	a	spheroid	has	some	characteristics	that	

resemble	the	dielectric	anisotropy	of	a	sphere,	but	others	are	different.	

Problem	03:	Dielectric	sphere		

Give,	in	SI	units,	the	expressions	of	the	internal	and	external	electric	field	of	a	
dielectric	sphere	under	an	applied	field.	Compute	the	body’s	electric	dipole	
moment	and	compare	the	results	with	those	obtained	by	Panofsky	and	Phillips	
(PP)	by	solving	Laplace’s	differential	equation172.	Identify	the	depolarization	factor	
there	given	and	verify	if	it	has	the	right	value.	
Solution	

For	a	sphere	of	radius	a,	in	SI	units,	eqs.	2.33	and	A1.14	give	

	
		
Ez
int = 3

(3ε0 + ε0χ)/ε0
E0 = 3

κ +2E
0 , 	 (6.6)	

where	κ	=	1	+	χ	is	the	dielectric	constant.	
From	the	potential	PP,	eq.	5-18,	it	is	obtained	

	
 		
φ(!r )= − 3E

0

κ +2z , Ez = −
∂φ(!r )
∂z

= 3
κ +2E

0 for r <a, 	 (6.7)	

coincident	con	the	previous	equation.	

For	the	depolarization	tensor	method	the	electric	dipole	moment	is	related	to	
the	polarization	by	eqs.	2.33:	

	
 		
!
P = ε0χ

!
Ez
int =

3ε0χ
κ +2

!
E0 =

3ε0(κ −1)
κ +2

!
E0 , !p =V !P = 4πε0a3

κ −1
κ +2

!
E0 , 	 (6.8)	

																																																								

	
172	 Panofsky	and	Phillips,	pp.	76-77.	
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the	same	value	given	by	PP’s	eq.	5-19.	

The	expression	for	the	external	field	in	the	depolarization	tensor	method	is	
given	by	eqs.	2.33:	

	
 			

!
E ext(!r )= !E0 − 1

ε0
next(!r )i !P = !E0 −3κ −1

κ +2nsphere
ext (!r )i !E0 , 	 (6.9)	

where				nsphere
ext 	is	given	by	eq.	3.66.	Thus	

	

 			

Eext(!r )= E0 +a3κ −1
κ +2

3x2 − r2
r5

3x ⋅ y
r5

3x ⋅z
r5

3y ⋅x
r5

3y2 − r2
r5

3y ⋅z
r5

3z ⋅x
r5

3z ⋅ y
r5

3z2 − r2
r5

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

i
0
0
E0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
,

=

a3κ −1
κ +2

3x ⋅z
r5

E0

a3κ −1
κ +2

3y ⋅z
r5

E0

E0 +a3κ −1
κ +2

3z2 − r2
r5

E0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

	 (6.10)	

The	potential	given	by	PP,	eq.	5-18,	is	

	
		
φ = a3κ −1

κ +2
z
r3
E0 − zE0 for r >a. 	 (6.11)	

The	field’s	components	are	therefore	

	

		

Ex = −
∂φ
∂x

= −a3κ −1
κ +2zE

0 ∂
∂x

r −3( ) = a3κ −1
κ +2

3x ⋅z
r5

E0 ,

Ey = −
∂φ
∂ y

= −a3κ −1
κ +2zE

0 ∂
∂ y

r −3( ) = a3κ −1
κ +2

3y ⋅z
r5

E0 ,

Ez = −
∂φ
∂z

= E0 −a3κ −1
κ +2E

0 ∂
∂z

zr −3( ) = E0 +a3κ −1
κ +2

3z2 − r2
r5

E0 ,

	 (6.12)	

coincident	with	the	values	eqs.	6.10.	

The	depolarization	factor	defined	by	por	PP’s	eq.	5.20	(where	factor	!ε0 	of	the	
used	edition	should	be	in	the	numerator,	not	in	the	denominator)	
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L= ε0

!
E0 −

!
E int

!
P

=
E0 − 3

κ +2E
0

ε0
3ε0χ
κ +2E

0
= κ −1
3(κ −1) =

1
3 , 	 (6.13)	

is	the	value	of	the	three	eigenvalue	of	the	sphere’s	unit	depolarization	tensor.	

Magnetic	polarization	

Problem	04:	Deriving	n	from	the	magnetic	vector	potential		

Derive	eq.		for	magnetic	induction	in	terms	of	n	starting	from	the	vector	
potential	for	uniformly	magnetized	matter !!


M : 173	

	

 		

!
A(!r )=

µ0λ '
4π

!
M ×(!r − !r ')
!r− !r ' 3

d3r '.
V
∫∫∫ 	 (6.14)	

Solution	

Usando	las	equations	A2.2	and	3.8	se	obtiene	

	
 		

!
A(!r )=

µ0λ '
4π ∇ 1

!r− !r '
⎛

⎝
⎜

⎞

⎠
⎟ d3r '

V
∫∫∫

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
×
!
M =

µ0λ '
4π ∇I(!r )× !M. 	 (6.15)	

From	the	identity	eq.	A2.9,	

	  		

!
B(!r )=∇×

!
A(!r )=

µ0λ '
4π ∇× ∇I(!r )× !M( )

∇× ∇I(!r )× !M( ) = !M i∇( )∇I(!r )− ∇I(!r )i∇( ) !M +∇I(!r ) ∇ i
!
M( )− !M ∇ i∇I(!r )( )

=
!
M i∇( )∇I(!r )− !MΔI(!r ).

	 (6.16)	

Using	eqs.	3.3	and	A3.7	it	is	obtained	

	
 			

!
B(!r )= µ0λ '

!
M − µ0λ 'N i

!
M for !r ∈V

−µ0λ 'next(
!r )i !M for !r ∉V

⎧
⎨
⎪

⎩⎪
, 	 (6.17)	

which	are	eqs.	2.35	and	2.44	for	 		
!
H0 =0. 	

Problem	05:	Permanently	magnetized	infinite	right	circular	cylinder	

A	very	long	right	circular	cylinder	of	radius	R	has	a	permanent	uniform	
magnetization	M	forming	an	angle	θ0	with	the	symmetry	axis.	Evaluate	the	internal	

																																																								

	
173	 Reitz,	p.	191	eq.	9-12.	
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and	external	magnetic	field	due	to	the	magnetization	and	plot	the	external	field	
lines.	

Solution	
The	internal	and	external	magnetic	fields	are	given	by	the	matrix	equations	

2.44.	The	coordinate	system	is	chosen	so	that	the	cylinder’s	axis	corresponds	to	z	
and	plane	xz	is	parallel	to	vector	M.	From	the	first	of	eqs.		2.44,	

	

 			

Hint =

Hx
int

Hy
int

Hz
int

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= −λ'N iM= −λ'

1/2 0 0
0 1/2 0
0 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
i

Mx

0
Mz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

−λ'Msinθ0 /2
0
0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
. 	 (6.18)	

That	is	

	
 		
Hx
int = − λ'2 Msinθ0 , Hy

int =0, Hz
int =0, H⊥ = −

λ'
2 M⊥ , H! =0, 	 (6.19)	

where	in	the	last	two	equations	the	components	are	given	in	the	directions	parallel	
and	perpendicular	to	the	cylinder’s	axis.	It	should	be	noticed	that	the	internal	
magnetic	field’s	component	parallel	to	the	cylinder’s	axis	vanishes	because	of	the	
shape	anisotropy.		

The	external	magnetic	field	is	obtained	the	second	of		eqs.	2.44	and	eq.	3.58:	

	

 			

Hext(!r )= −λ'next(!r )iM
Hx
ext

Hy
ext

Hz
ext

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= − λ'R

2

2ρ2

−cos2ϕ −sin2ϕ 0
−sin2ϕ cos2ϕ 0
0 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
i

M⊥

0
M
"

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
,

Hx
ext

Hy
ext

Hz
ext

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= λ'R2
2ρ2

M⊥ cos2ϕ
M⊥ sin2ϕ

0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
.

	 (6.20)	

The	equations	of	the	field	lines	are174	

	 		x
2 + y2 = k ⋅ y , z = z0. 	 (6.21)		

where	k	and	z0	are.	The	geometry	of	these	lines	is	
shown	by	Figure	22.	The	lighter	gray	
circumpherences	are	the	equipotental	lines,		function	
only	of	ρ.	The	k	values	of	the	field	lines,	with	typical	
dipolar	shape,	are	succesive	multiples	of	2,	except	for	
the	horizontal	one	for	which		k	=	210.	Lines	are	the	
same	for	any	value	of	z.	

	
Figure	22.	Field	lines	of	a	

uniformly	magnetized	cylinder.	

																																																								

	
174	 Kemmer,	p.	47	Problem	12.	
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Problem	06:	Isotropic	magnetic	sphere	

An	isotropic	ferromagnetic	sphere	is	placed	in	a	
magnetic	uniform	field	H0	with	fixed	sources.	
Assuming	the	magnetization	M(H)	to	be	the	
function	given	by	the	right	graph	—where	M	s	is	the	
saturation	magnetization	and	M	0	the	spontaneous	
one—	determine	the	resulting	values	of	the	
magnetization	and	the	magnetic	field.	
Solution	

From	eq.	2.44	it	should	be	

	
Figure	23.	Graphical	solution	for	the	
isotropic	ferromagnetic	sphere.	

	
		
H =H0 − λ '

3 M(H), 	 (6.22)	

where	M(H)	is	the	curve	represented	in	Figure	23.	In	the	same	graph	is	
represented	the	line	

	
		
g(H)= H

0 −H
λ '/3 , such	that g(0)= g0 = H0

λ '/3 , g(H0)=0. 	 (6.23)	

The	desired	values	of	M	and	H	are	given	by	the	intersection	of	that	line	with	the	
function	M(H),	because	at	that	point	

	
		
g(H)= H

0 −H
λ '/3 =M(H), that	is, H =H0 − λ '

3 M(H). 	 (6.24)	

The	external	field	is	the	given	by	

	
 			
!
H(!r )= !H0 − λ '

3 n
ext(!r ) !M(!r ), 	 (6.25)	

where	the	value	of	next	is	that	of	the	sphere,	eq.	3.66.

	Conductors	

Problem	07:	Solve	ellipsoidal	conductors	using	equivalente	polarization	
Derive	the	equations	that	solve	the	case	of	an	ellipsoidal	conductor	in	a	uniform	

applied	field	using	the	equivalente	polarization	method.	
Solution	

Starting	with	the	potential	eq.	2.65,	use	the	expression	eq.	3.29	for	the	
depolarization	tensor	asumming	that	the	equivalente	polarization	is	uniform.	It	is	
then	obtained	

	
 			

!
E(!r )= !E0 −k1∇

!
Pf id

2!r '
!r − !r 'S

"∫∫ =
!
E0 −4πk1n(

!r )i !Pf . 	 (6.26)	
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The	equivalente	polarization	
 	
!
Pf 	is	determined	by	the	vanishing	internal	field,	

and	the	expression	of	the	external	field	is	obtained	in	the	same	way	as	in	Problem	
08.	

Problem	08:	A	conductor	is	a	perfect	dielectric	

Verify	that	ellipsoidal	conductors	behave	as	dielectrics	with	infinite	scalar	
susceptibility.	
Solution	

Combining	eqs,	2.12	and	2.33,	for	a	dielectric	with	scalar	χ	it	is	obtained	

	

 			

Eint = E0 − λ
ε0
N iPeq , where Peq =

ε0
λ
χ 1+ χN( )−1E0 for r∈V ,

Eext(!r )= E0 − λ
ε0
next(!r )iPeq for r∉V .

	 (6.27)	

Taking	the	limit	 χ	→	∞		in	the	principal	system	of	coordinates	of	N,	

	

			

χ 1+ χN( )−1 =
χ 1+ χNx( )−1 0 0

0 χ 1+ χNy( )−1 0

0 0 χ 1+ χNz( )−1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

,

lim
χ→∞

χ 1+ χNα( )−1 = lim
χ→∞

1
1
χ +Nα

=N −1
α , limχ→∞

χ 1+ χN( )−1 =N−1.

	 (6.28)	

From	the	previous	equation	and	eq.	2.66:	

	

 !!!

Peq =
ε0
λ
N−1 iE0 , Eint = E0 − λ

ε0
N iPeq =0,

Eext(r )= E0 − λ
ε0
next(r )iPeq , p=VPeq =

ε0
λ
VN−1 iE0.

	 (6.29)	

These	equations	are	the	same	as	2.63	and	2.66	if	the	following	assignation	is	made:		

	
		
λ
ε0
Peq = E

+ . 	 (6.30)	

Problem	09:	Polarization	of	a	spherical	conductor		
Compare	the	charge	density	induced	on	the	surface	of	a	spherical	conductor,	

eq.	2.57,	that	obtained	by	using	the	equivalent	polarization	
 !!

Peq 	eq.	2.66.	
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Solution175	

From	eq.	2.57,	the	surface	charge	density	σ		at	point	 !
r S 	is	

	
 			
σ (!r S )=

ε0
λ
ŝ(!r S )iN −1 i

!
E0 , N = 131, ŝ(

!r S )=
!r S

R
. 	 (6.31)	

From	the	expression	of	the	electric	dipole	moment	of	the	sphere,	eq.	2.60,	

	
 		
!p =

3ε0V
λ
!
E0 , σ (!r S )= 1

V

!p i
!r S

R
. 	 (6.32)	

The	same	expression	is	obtained	from	the	last	of	eqs.	6.29	for	the	equivalent	
polarization	model.	This	expression	for	σ	should	be	compared	with	that	given	by	
eq.	3.32.	

Problem	10:	External	field	of	a	spherical	conductor	
Prove	that	the	external	field	created	by	a	spherical	conductor	immersed	in	a	

uniform	electric	field	is	that	of	a	point	dipole	and	find	its	moment176.	

Solution	
The	field	of	a	polarized	ellipsoidal	conductor	is	given	by	the	first	two	of	

eqs.	2.63,	where	the	internal	depolarization	tensor	is	N	=	(1/3)1.	That	is	

	  			
!
E ext(!r )= !E0 −next(!r )iN −1 i

!
E0 = 1−3next(!r )( )i !E0 , 	 (6.33)	

where	next	for	a	sphere	is	given	by	the	second	of	eqs.	3.67,	

	
 			
next(!r )= − R

3

3
3!r!r −(!r i

!r )1
r5

. 	 (6.34)	

Therefore	

	
 		
!
E ext(!r )= !E0 +R3 3

!r !r i
!
E0( )− r2 !E0

r5
. 	 (6.35)	

The	electric	dipole	moment	of	the	body	is	given	by	the	last	two	of	eqs.	2.63:	

	
 			
!p =

ε0V
λ
N −1 i

!
E0 =

4π ε0R3
λ

!
E0 = 1

k1
R3
!
E0. 	 (6.36)	

Upon	replacemente	in	the	expression	for	the	external	electric	field	it	is	obtained	

	
 		
!
E ext(!r )− !E0 = k1

3!r !r i
!p( )− r2!p
r5

, 	 (6.37)	

																																																								

	
175	 Solivérez	(2008),	p.	207.	
176	 Solivérez	(2008),	p.	207.	
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which	is	the	expression	for	a	dipolar	field	(see	eq.	A4.1).	

Problem	11:	Directions	for	which	P	is	parallel	to	E0	in	triaxial	ellipsoids	

A	metallic	triaxial	ellipsoid	is	placed	in	an	arbitrary	uniform	field	E0.	Assuming	
the	three	eigenvalues	of	N	are	known,	determine:	
a)	The	electric	dipole	moment	p	of	the	ellipsoid;	
b)	the	directions	along	which	the	equivalent	polarization	Peq	is	parallel	to	the	
applied	field	E0;	

c)	the	angle	between	P	and	E0.	
Solution	
From	eqs.	2.63	the	electric	dipole	moment	p	in	the	ellipsoid’s	principal	system	

of	coordinates	—chosen	so	that	a	>	b	>	c—	is	

	

 			

p=
ε0V
λ
N−1 iE0 =

ε0V
λ

N −1
a 0 0
0 N −1

b 0
0 0 N −1

c

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

i

Ex
0

Ey
0

Ez
0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
, where 1

Na

< 1
Nb

< 1
Nc

. 	 (6.38)	

The	angle	δ 	between	the	equivalent	polarization	Peq	=	p/V	and	the	field	E0	is	
obtained	from	the	scalar	product	and	norm	of	both	vectors:	

	

 		

cosδ =
!
P i
!
E0

P ⋅E0 ,
!
P i
!
E0 = PαEα

0

α
∑ =

ε0
λ

N −1
α Eα

0( )2
α
∑ ,

P =
ε0
λ

Nα
−1Eα

0( )2
α
∑ , E0 = Eα

0( )2
α
∑ .

	 (6.39)	

Angle	δ		vanishes	when	the	numerator	and	the	denominator	of	the	first	equation	
are	equal,	which	happens	only	along	the	ellipsoid’s	principal	axes	(see	eq.	5.15	and	
Figure	18)	where	

	
 		
!
P i
!
E0 =

ε0
λ
N −1

α Eα
0( )2 , P = ε0

λ
Nα

−1Eα
0 , E0 = Eα , α = x , y ,z. 	 (6.40)	

Problem	12:	Electric	fields	generated	by	sharp	points	
Analize	the	fields	generated	in	sharp	portions	of	conductors	submitted	to	

uniform	electric	fields.	To	that	end	calculate	the	field	intensity	on	the	intersection	
of	the	surface	of	a	very	long	prolate	spheroid	with	symmetry	axis	x	and	compare	it	
with	that	on	the	spheroid’s	equator.	

Solution	

The	field	on	the	body’s	surface	may	be	obtained	from	eqs.	3.41	and	A7.8.	For	the	
point	(a,0,0)	is	obtained		
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ŝ(a,0,0)= x̂ , next(a,0,0)=
Na −1 0 0
0 Nb 0
0 0 Nc

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
. 	 (6.41)	

From	eq.	2.63	the	electric	field	at	point	(a,0,0)	is	

	  			E
ext(0,0,c)= E0 −next(0,0,c)iN−1iE0 , 	 (6.42)	

where	

	

 			

next(0,0,c)iN−1

=

Na −1 0 0
0 Nb 0
0 0 Nc

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
i

Na
−1 0 0
0 Nb

−1 0
0 0 Nc

−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
1−Na

−1 0 0
0 1 0
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
. 	 (6.43)	

Therefore,	the	electric	field	has	the	following	components	normal	and	paralled	to	
the	x	axis:	

	
		
Ex
ext(0,0,c)= 1

Nz

Ex
0 , Ey

ext(0,0,c)= Ezext(0,0,c)=0. 	 (6.44)	

When	the	oblate	spheroid	becomes	very	thin	a	≫	b	=	c	and	Na	is	very	small.	The	x	
component	of	the	surface	field	becomes	very	large,	normal	and	outgoing	from	the	
body	at	point	(a,0,0).	A	very	small		applied	electric	field,	like	the	ones	generated	
during	an	electric	storm,	may	thus	generate	a	very	large	external	field	with	the	
value	given	by	eq.	6.44.	

The	equatorial	electric	field,	tangent	to	the	surface,	vanishes	as	the	internal	one	
because	of	the	continuity	of	the	tangential	component	through	any	interphase.	

	Superconductors	

Problem	13:	Superconducting	infinite	cylinder	and	sheet	

Show	how	to	solve	the	infinite	right	circular	cylinder	of	infinite	length	and	the	
sheet	of	constant	thickness	and	infinite	extension	in	both	the	magnetization	and	
surface	current	model.	Discuss	the	existence	of	a	“reduced”	inverse	of	matrix	N.	

Solution	
Use	the	same	method	applied	for	a	conducting	infinite	sheet	in	page	56.	

Problem	14:	Magnetized	superconducting	sphere		
Evaluate	the	magnetization	and	the	internal	and	external	fields	generated	by	a	

superconducting	sphere	under	a	uniform	applied	induction	!!B0ẑ .	Compare	with	the	
expressions	given	by	Reitz177.	

																																																								

	
177	 Reitz,	p.	eq.	15-6.	
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Solution	

The	expressions	given	by	Reitz	(in	SI	units)	are:	

	
 		

!
B =0, !H = 3

2µ0
B0ẑ , !M = − 3

2µ0
B0ẑ for r ≤a. 	 (6.45)	

	

 		

!
B(!r )= µ0

!
H(!r )= B0ẑ − a

3

r3
B0 cosθ r̂ − 12

a3

r3
B0 senθ θ̂ ,

KM(a,θ ,ϕ)= −
3
2µ0

B0 senθ ϕ̂.
	 (6.46)	

From	eqs.	2.73,	where	N	=	(1/3)1,	it	is	obtained	in	SI	units	(λ'	=	1)	for	r	 ≤	a:	

	
 		

!
B int = µ0

!
H int +

!
M( ) =0, !M = − 1

µ0
1− 13
⎛
⎝⎜

⎞
⎠⎟

−1 !
B0 = − 3

2µ0
!
B0 = −

!
H int , 	 (6.47)	

as	given	by	Reitz.	

Equation	3.66	gives	next	for	the	sphere	showing	the	it	is	a	dipolar	field	(see	eq.	
A4.1)	for	r	≥	a,	

	

 			

!
Bext(!r )= !B0 − µ0n

ext(!r )i !M =
!
B0 − a

3

3 µ0
r2
!
M −3( !M i

!r )!r
r5

=
!
B0 + a

3

2

!
B0 −3( !B0 i r̂)r̂

r3
=
!
B0 − a

3

r3
B0 cosθ r̂ − 12

a3

r3
B0senθ θ̂ ,

as !B0 = B0ẑ = B0 cosθ r̂ −B0senθ θ̂ ,

	 (6.48)	

as	given	by	Reitz.	

According	to	eqs	2.74	and	A7.8	the	magnetization	surface	current	is	

	
 		

!
KM(
!r )= !M(!r )× ŝ(!r )= − 3

2µ0
!
B0 × r̂ = − 3

2µ0
B0ẑ × r̂ = − 3

2µ0
B0 senθ ϕ̂ , 	 (6.49)	

which	completes	the	proof	of	perfect	agreement.	

Problem	15:	Superconductivity	as	perfect	diamagnetism		

Verify	that	the	equations	describing	superconductivity	with	the	magnetization	
model	may	also	be	obtained	from	the	perfect	diamagnetic	case,	that	is	with	
susceptibility		χm = −1. 	
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Solution	

Induced	magnetization	in	ellipsoids	is	described	by	eqs.	2.49.	For	Hint	and	M,	
where		χm = −1, 	it	is	

	
 		
Hint = 1−N( )−1 iH0 , M= 1

λ 'χmH
int = − 1

λ 'H
int , Bint = µ0 H

int +λ 'M( ) =0. 	 (6.50)	

The	external	field	is	then	give	by	

	  			H
ext(!r )=H0 −λ 'n(!r )iM. 	 (6.51)	

The	expressions	are	the	same	given	by	the	magnetization	model	of	
superconductivity,	eqs.	2.73.	

Problem	16:	Magnetic	moment	of	a	superconducting	ellipsoid		
Evaluate	the	magnetic	dipole	moment	of	a	superconducting	triaxial	ellipsoid	

using	the	surface	current	model.	Compare	its	value	with	that	given	by	the		
magnetization	model.	
Solution	

From	eq.	A1.12,	the	magnetic	dipole	moment	of	a	surface	distribution	of	current	
is	

	
 		
!m=

k3
2

!r ×
!
K(!r )d2r.

S
"∫∫ 	 (6.52)	

where	 is	current	density	vector	whose	value	may	be	obtained	from	eqs.	2.75	
and	A1.11:	

	
 		

!
K(!r )= 1

µ0λ 'k3
ŝ(!r )× !B+ , 	 (6.53)	

It	is	then	obtained	

	
 		
!m= 1

2µ0λ '
!r × d2!r ×

!
B+( ).

S
"∫∫ 	 (6.54)	

The	integrand’s	double	vector	product	may	be	expanded	as	follows,	

	
 		
!r × d2!r ×

!
B+( ) = !r i

!
B+( )d2!r − !r id2!r( ) !B+ , 	 (6.55)	

which	replaced	in	the	integral	gives	

	
 		
!m= 1

2µ0λ '
!r i
!
B+( )d2!r

S
"∫∫ − 1

2µ0λ '
!r id2!r

S
"∫∫

⎛

⎝⎜
⎞

⎠⎟
!
B+ . 	 (6.56)	

The	first	surface	integral	may	be	transformed	into	a	volume	integral	by	using	the	
gradient	theorem	eq.	A3.9;	the	second,	by	using	the	divergence	theorem	eq.	A3.8.	
Thus	

		 
!
K(!r )
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!m= 1
2µ0λ '

∇ !r i
!
B+( )d3r

V
∫∫∫ − 1

2µ0λ '
∇ i
!r( )d3r

V
∫∫∫

⎛

⎝⎜
⎞

⎠⎟
!
B+ ,

where ∇ !r i
!
B+( ) = !B+ , ∇ i

!r =3, d3r
V
∫∫∫ =V .

	 (6.57)	

where	use	has	been	made	of	 .	Using	eq.	2.82	it	is	finally	obtained	

	
 				
!m= − 1

µ0λ
V
!
B+ = 1

µ0λ '
α s i
!
B0 , α s = −V 1−N( )−1 . 	 (6.58)	

where 	is	the	body’s	polarizability	tensor	of	the	superconductor.	This	value	of	 	
coincides	with	that	given	by	eq.	2.72.	

Problem	17:	Description	of	Meissner	Effect	using	magnetization	currents	

Solve	the	Meissner	Effect	in	an	ellipsoidal	superconductor	using	only	the	surface	
magnetization	current.	

Solution	

The	solution	follows	the	same	steps	as	in	the	derivation	surface	current	model	
of	superconductivity,	but	using	eq.	6.53.	

Problem	18:	Approximate	solution	for	non	ellipsoidal	bodies	

Find	an	approximate	solution	for	the	field	generated	by	a	non	ellipsoidal	body	in	
one	of	the	cases	of	Table	1.	

Tentative	solution	
Use	the	iterative	method	discussed	at	the	end	of		section	Solving	the	integro-

differential	equations	by	iteration	at	page	42.	This	is	an	open	problem.	

Depolarization	tensor	

Problem	19:	Components	of	N	in	spherical	symmetry	
Add	to	the	symmetry	operations	of	spheroids	(see	eq.	3.25)	a	single	one	that	

corresponds	to	a	sphere.	Use	it	to	determine	the	three	eigenvalues	of	N	in	
combination	with	the	unit	trace	rule	eq.	3.15.	Which	is	the	matrix	representation	of	
N	in	a	coordinate	system	different	from	the	principal	one?	

Solution	

A	symmetry	should	be	added	that	exchanges	the	spheroid’s	rotational	axis	by	
any	of	the	two	normal	axes,	for	instance	a	rotation	R	in	90°	around	coordinate	axis	
x,	as	follows.	

 !

B+

!α s  !
m
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R iN =

1 0 0
0 0 1
0 −1 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
i

N⊥ 0 0
0 N⊥ 0
0 0 N

!

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=

N⊥ 0 0
0 0 N

!

0 −N⊥ 0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=N iR =

N⊥ 0 0
0 N⊥ 0
0 0 N

!

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

i

1 0 0
1 0 1
0 −1 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

N⊥ 0 0
0 0 N⊥

0 −N
!

0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

.

	 (6.59)	

from	which	
 !!N⊥ =N =N. 	If	the	unit	trace	rule	eq.	3.15	is	applied,	it	follows	that	

3N	=	1,	that	is,	N	=	1/3.	

As	N	is	proportional	to	the	unit	matrix,	its	representation	is	invariable	in	any	
coordinate	system	due	to	the	transformation	property	eq.	3.23:	

	
 		
N'=R i(131)iR t = 1

31 	 (6.60)	

where	the	orthogonality	relationship	eq.	3.17	was	used.	

Problem	20:	Single	eigenvalue	may	determine	the	type	of	spheroid	

An	ellipsoid	has	an	eigenvalue	N	=		0.16,	the	other	two	being	equal.	What	is	the	
value	of	the	latter?	To	what	type	of	ellipsoid	they	pertain?	Which	is	the	ratio	of	the	
smaller	semiaxes	to	the	largest?	

Solution	
The	body	is	a	spheroid	with	polar	eigenvalue	Np	=	0.16	and	two	equal	equatorial	

eigenvalues	Ne.	From	the	trace	rule	eqs.	3.15,	Np	+	2Ne	=	1;	therefore,	
Ne	=	(1	−	Np)/2	=	0.42,	where	Np	<	Ne.	As	the	order	of	semiaxes	is	the	inverse	of	the	
order	of	eigenvalues,	the	polar	semiaxes	is	greater	then	the	equatorial	ones,	
corresponding	to	a	prolate	spheroid	(see	Figure	20).	In	the	conventional	order	
a	≥	b	≥	c,	Na	=	0.16,	Nb	=	Nc	=	0.42.	The	ratio	of	semiaxes	β	=	γ		may	be	obtained	
from	eq.	4.30	or	from		Figure	14;	the	latter	being	enough	for	the	given	precision.	By	
inspection	it	is	easily	seen	that	β	=	γ 	≅	0.47,	value	that	may	be	checked	using	Figure	
15	for	Nb	=	Nc	=	0.42	and	adjusted	for	higher	precission	using	eq.	4.30.	

Problem	21:	Eigenvalues	and	aspect	ratios	

Using	each	of	the	following	set	of	data,	identify	all	the	eigenvalues	of	N	and	the	
aspect	ratios	of	the	ellipsoid	to	which	it	pertain.	
a) N	=	0.65;	γ	=	0.10.	
b) N	=	0.60;	β	=	0.50.	
c) N1	=	N2	=	0.40.	

Solutions	
a)	The	range	of	values	0.5-1.0	pertains	only	to	Nc.	As	seen	from	Figure	16,	for	

γ		=	0.10	the	value	Nc	=	0.65	is	on	the	curve	β	=	0.20.	The	other	eigenvalues	for	
this	aspect	ratio	are	Nb	=	0.32	(obtained	from	Figure	15)	and	Na	=	0.03	(Figure	
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Problem	24:	Depolarization	tensor	of	a	very	long	right	circular	cylinder	

Compute	the	depolarization	tensor,	eq.	3.4,	of	a	right	circular	cylinder	of	infinite	
length	using	electrostatic	Gauss’s	Law.	
Solution	

See	section	Right	circular	cylinder	of	infinite	length	of	chapter	Chapter	3.	

Problem	25:	Depolarization	tensor	of	a	sphere	
Compute	the	depolarization	tensor	of	a	sphere,	eq.	3.4,	using	electrostatic	

Gauss’s	Law.	
Solution	

See	section	Sphere	of	chapter	3.	

Problem	26:	Alternative	way	of	obtaining	certain	eigenvalues	of	N	
Explore	alternatives	ways	of	obtaining	the	eigenvalues	of	N	not	given	in	this	

book.	See,	for	instance,	MacMillan’s	equations	32.10	and	39.4.	Bear	in	mind	the	
discussion	made	at	section	Unified	treatment	of	N	for	spheroids.	Test	your	approach	
deriving	the	depolarization	factors	of	the	two	types	of	spheroids.		

Solution	
Open	problem.	

Problem	27:	Solving	the	prolate	spheroid	with	Legendre’s	elliptic	integrals	

Show	that	the	principal	values	for	the	prolate	spheroids	may	be	obtained	from	
the	general	expression	in	terms	of	normal	of	elliptic	integrals	eq.	4.9.	

Solution	
The	prolate	spheroid	corresponds	to	the	case	k	=	1,	for	which	E	and	F	are	given	

by	eq.	A9.1,	and	φ	should	be	expressed	in	terms	of	β	=	γ.	

	
		
E(φ ,1)= sinφ , F(φ ,1)= dt

cost0

φ

∫ = ln tan φ /2+π /4( )( ) , cosφ = γ , 	 (6.62)	

where	use	has	been	made	of	the	last	of	eqs.	4.9.	Expressing	the	tangent	in	terms	of	
cosine	,	it	is	obtained	

	

	

tan φ /2+π /4( ) = sin φ /2+π /4( )
cos φ /2+π /4( )

= sin(φ /2)cos(π /4)+ cos(φ /2)sin(π /4)cos(φ /2)cos(π /4)− sin(φ /2)sin(π /4) =
sin(φ /2)+ cos(φ /2)
cos(φ /2)− sin(φ /2) ,

	 (6.63)	

as	sin(π/4)	=	cos(π/4).	Taking	into	account	the	following	trigonometric	identity178,	

																																																								

	
178	 Korn	&	Korn,	p.	810	eq.	21.2.9.	
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sin(φ /2)= 1− cosφ

2 , cos(φ /2)= 1+ cosφ
2 for 0<φ < π2 , 	 (6.64)	

it	is	finally	obtained	

	

	

tan φ /2+π /4( ) = sin(φ /2)+ cos(φ /2)cos(φ /2)− sin(φ /2)

=

1− cosφ
2 + 1+ cosφ

2
⎛

⎝
⎜

⎞

⎠
⎟

1+ cosφ
2 − 1− cosφ

2
⎛

⎝
⎜

⎞

⎠
⎟

1+ cosφ
2 + 1− cosφ

2
⎛

⎝
⎜

⎞

⎠
⎟

1+ cosφ
2 + 1− cosφ

2
⎛

⎝
⎜

⎞

⎠
⎟

=
1+ cosφ + 1− cosφ( )2
1+ cosφ − 1− cosφ( ) =

1+ 1− cos2φ
cosφ =

1+ 1−γ 2

γ
.

	 (6.65)	

Therefore	

	
		
E(φ ,1)= 1−γ 2 , F(φ ,1)= ln 1+ 1−γ 2

γ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
. 	 (6.66)	

As	β	=	γ,	replacement	of	this	values	in	the	first	of	eqs.	4.9	gives	

	

		

Nx = −
β ⋅γ ⋅E(φ ,1)
1−β 2( ) 1−γ 2

+ β ⋅γ

1−β 2( ) 1−γ 2
F(φ ,1)

= β 2

1−β 2
1
1−β 2

ln 1+ 1−β 2

β

⎛

⎝
⎜

⎞

⎠
⎟ −1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
.

	 (6.67)	

The	value	coincides	with	that	of	eq.	4.30,	obtained	by	direct	integration	of		eq.	3.82,	
which	serves	at	the	same	time	of	verification	of	the	expression	in	normal	elliptic	
integrals	eq.	A9.1.	

	

		

N y = −
γ 2

β 2 −γ 2 +
β ⋅γ ⋅ 1−γ 2( )
β 2 −γ 2( ) 1−β 2( ) −

β ⋅γ

1−β 2( ) 1−γ 2
ln 1+ 1−γ 2

γ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
,

Nz =
β 2

β 2 −γ 2( ) −
β ⋅γ ⋅ 1−γ 2

β 2 −γ 2( ) 1−γ 2
.

	 (6.68)	

Problem	28:	Spherical	shell	

Explore	the	existence	of	a	depolarization	tensor	for	a	spherical	shell	
(homoeoid),	using	Gauss’s	Law.	
Solution	

Gauss’s	theorem	will	be	used	to	find	the	potential	of	the	homoeoid	of	Figure	24	
where	the	gray	region	is	homogeneously	charged	matter.	The	“depolarization	
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tensor”	will	then	be	calculated	by	derivation	of	the	potential.	The	shell	is	assumed	
to	have	constant	volume	density	of	charge	ρ.	For	the	calculation	of	the	flux	of	the	
electric	field	the	surfaces	S1,	S2	and	S3	will	be	used,	corresponding	to	the	three	
regions	r	<	R1,	R1	<	r	<	R2	and	R2	<	r.	From	the	symmetry	of	the	problem	the	electric	
field	has	only	radial	component	E(r).	
Over	S1	the	flux	is	

	
 		

!
E ⋅d
!
S

S1

"∫∫ = 4πr2E = 4πk1Q1 =0, E =0. 	 (5.69)	

Over	S2	it	is	

	

 		

!
E id
!
S

S2

"∫∫ = 4πr2E = 4πk1Q2

= 4πk1ρ
4π
3 r3 −R31( ) ,

E =
4πk1ρ
3 r −

R1
3

r2
⎛
⎝⎜

⎞
⎠⎟ for R1 ≤ r ≤R2.

	 (6.70)	

	
Figure	24.	Spherical	homoeoid.	

Over	S3	it	is	obtained	

	

 		

!
E id
!
S

S2

"∫∫ = 4πr2E = 4πk1Q3 = 4πk1ρ
4π
3 R2

3 −R31( ) ,

E =
4πk1ρ
3

R2
3 −R1

3

r2
⎛
⎝⎜

⎞
⎠⎟ for R2 ≤ r.

	 (6.71)	

	The	electric	potential	φ	is	obtained	by	integration	over	r	of	the	previous	
expressions,	from	which	it	is	obtained	f	(see	eq.	3.43):	

	

 		

f (!r )= − φ(r)
4πk1ρ

= 1
4πk1ρ

E(r)dr∫ =

const. for	r ≤R1 ,

const.+ 16r
2 +
R31
3 r

−1 for R1 ≤ r ≤R2 ,

const.+ R2
3 −R1

3

3 r −1 for R2 ≤ r.

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

	 (6.72)	

values	that	coincide	with	those	given	by	MacMillan179.	The	potential	is	the	
difference	of	the	potentials	of	the	spheres	of	radius	R2	and	R1.	The	double	
derivatives	of	f		(see	eq.	3.8)	do	not	define	a	valid	(constant)	internal	
depolarization	tensor.	

																																																								

	
179	 MacMillan,	p.	40.	
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Problem	29.	Unit	vector	normal	to	the	ellipsoid's	surface		

Verify	that	vector			ŝ , 	eq.	A7.8,	is	normal	to	the	surface	at	the	intersections	with	
the	three	cartesian	axes	and	at	every	point	of	the	ellipses	determined	by	the	
intersection	with	the	planes	defined	by	an	arbitrary	pair	of	coordinate	axes.	

Solution		

Unit	vector	 !!ŝ(
r ) 	is	given	by	

	
 		
ŝ(!r )= x2

a4
+ y

2

b4
+ z

2

c4
⎛

⎝⎜
⎞

⎠⎟

−12 x
a2
x̂ + y

b2
ŷ + z

c2
ẑ

⎛
⎝⎜

⎞
⎠⎟
. 	 (6.73)	

At	the	intersection	with	any	coordinate	axis	the	ellipsoidal	surface	is	trivially	
normal	to	it.	Less	trivial	is	the	condition	for	the	elliptic	section	determined	by	a	
pair	or	coordinate	axes,	like	the	plane	xy	discussed	below.	The	corresponding	
ellipsoid’s	central	section	for	z	=	0	is	

	
		
x2

a2
+ y

2

z2
=1. 	 (6.74)	

The	equation	of	the	straight	line	normal	to	the	ellipse	at	point		(x1,	y1)	is180	

	
		

y − y1
x − x1

=
a2 y1
b2x1

. 	 (6.75)	

Vector	!!ŝ 	at	that	point	is	

	
 		
ŝ(!r1)=

x1
2

a4
+
y1
22

b4
⎛

⎝
⎜

⎞

⎠
⎟

−12 x1
2

a2
x̂ +

y1
2

b2
ŷ

⎛

⎝
⎜

⎞

⎠
⎟ , 	 (6.76)	

whose	components	have	the	ratio	

	
 		

s y(
!r1)

sx(
!r1)

=
y1
2

b2
a2

x21
, 	 (6.77)	

coincident	with	the	slope	of	the	straight	line	normal	to	the	ellipse	at	that	point.	

Problem	30:	Surface	step	discontinuity	of	the	depolarization	tensor	

Prove	eq.	3.38	without	making	reference	to	an	electric	or	magnetic	fields.	
Solution	

Hint:	use	eq.	3.29.	

																																																								

	
180	 Korn	and	Korn,	p.	46.	
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Problem	31:	Ellipsoidal	conductor	with	net	charge	

Discuss	the	feasibility	of	using	the	depolarization	tensor	method	for	obtaining	
the	surface	charge	distribution	on	ellipsoidal	conductors	with	net	charge	in	an	
applied	electric	field.	

Solution	

It	is	an	open	problem	not	solved	by	the	author.	The	depolarization	tensor	
method	seems	to	require	zero	net	charges.	

Problem	32:	Application	of	Ivory’s	method	to	the	sphere	
As	an	illustration	of	Ivory’s	method	given	in	section	Obtention	of	the	external	

gravitational	potential	by	Ivory’s	method,	find	the	internal	and	external	potential	
of	a	homogeneous	spherical	mass.	
Solution	

Internal	value	
The	potential	inside	the	body	is	given	by	eqs.	4.4	and	4.5,	so	it	is	necessary	to	

evaluate	the	following	integrals.	

	

		

ds

a2 + s( ) b2 + s( ) c2 + s( )0

∞

∫ = ds

R2 + s( )3/20

∞

∫ = −2 R2 + s( )−1/2
∞

0
= 2
R
, 	 (6.78)	

	

		

ds

dα
2 + s( ) a2 + s( ) b2 + s( ) c2 + s( )0

∞

∫ = ds

R2 + s( )5/2
=

0

∞

∫ − 23 R
2 + s( )−3/2

∞

0
= 2
3
1
R3
. 	 (6.79)	

The	potential	eq.	4.2	is	therefore	

	
		 
φ(!r )=C0(λ)+Cx(λ)x2 +C y(λ)y2 +Cz(λ)z2 =M

1
2R − 1

2R3 r
2⎛

⎝⎜
⎞
⎠⎟
, 	 (6.80)	

where	M	is	the	mass	of	the	sphere.	The	expression,	mutatis	mutandis,	coincides	
with	the	potential	of	a	uniformly	charged	sphere	inside	the	body	(eq.	3.62).	

External	value	

The	value	of	κ	is	determined	by	solving	eq.	A7.20,	that	for	the	sphere	of	radius	R	
becomes	

	
		
x2 + y2 + z2

R2 +κ
= r2

R2 +κ
=1, giving κ = r2 −R2. 	 (6.81)	

This	value	should	be	used	in	eqs.	4.52	and	4.54.	The	integrals	to	evaluate	are	

	

		

ds

a2 + s( ) b2 + s( ) c2 + s( )κ

∞

∫ = ds

R2 + s( )3/2r2−R2

∞

∫ = −2 s +R2( )−1/2
r2−R2

∞

= 2
r
, 	 (6.82)	
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ds

dα
2 + s( ) a2 + s( ) b2 + s( ) c2 + s( )κ

∞

∫ = ds

R2 + s( )5/2r2−R2

∞

∫ = − 23 R
2 + s( )−3/2

r2−R2

∞

= 23
1
r3
. 	 (6.83)	

The	potential	eq.	4.2		at	points	external	to	the	body	is	therefore		

	

		 

φ(!r )=C0(λ)+Cx(λ)x2 +C y(λ)y2 +Cz(λ)z2

=πσabc 21
r
− 23

x2 + y2 + z2

r3
⎛

⎝⎜
⎞

⎠⎟
= 4πR

3σ
3

1
r
= M4

1
r
,
	 (6.84)	

where	M	is	the	mass	of	the	sphere.	The	expression,	mutatis	mutandis,	coincides	
with	the	potential	of	a	uniformly	charged	sphere	outside	the	body	(eq.	3.62).	

Problem	33:	Expression	for	far	away	fields	obtained	from	next	
Using	Ivory’s	method	give	the	expression	of	next	at	large	distances	from	a	

uniformly	polarized	triaxial	elipsoid.	
Solution	

Far	away	from	the	body	the	radial	distance	r	≫	a	and	κ	≫	a2.		Therefore,	in	the	
equation	A7.20	that	determines	κ 	it	is	valid	to	disregard	the	squared	semiaxes	in	
the	denominator	so	that	

	
		
x2

a2 +κ
+ y2

b2 +κ
+ z2

c2 +κ
≅ r

2

κ
≅1, κ ≅ r2. 	 (6.85)	

These	value	of	κ	should	now	be	used	in	the	expression	for	
 		n
ext
αβ(
!r )  ,	eqs.	4.66,	with		

	

		

Nα (κ )=
abc
2

ds

dα
2 + s( ) a2 + s( ) b2 + s( ) c2 + s( )κ

∞

∫

= abc2
ds
s5/2

= − abc3
r2

∞

∫ s−3/2
r2

∞
= abc

3
1
r3
,

	 (6.86)	

	 		 a2 +κ( ) b2 +κ( ) c2 +κ( ) = r3 , 	 (6.87)	

	

 		

sα (
!r |κ )=

xα
d2α +κ

x2

a2 +κ( )2
+ y2

b2 +κ( )2
+ z2

c2 +κ( )2
=
xα
r
. 	 (6.88)	

Therefore	
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next(!r )=N(κ )− abc

a2 +κ( ) b2 +κ( ) c2 +κ( )
!s(!r |κ ) !s(!r |κ )

= 1
4π

V
3
r2

r5
1−3
!r!r
r5

⎛

⎝⎜
⎞

⎠⎟
,

	 (6.89)	

where	V	 is	 the	 volume	 of	 the	 ellipsoid	 eq.	 A7.4.	 The	 tensor,	 equal	 to	 that	 of	 the	
sphere	eq.	3.66,	corresponds	to	a	dipolar	field	where	the	dipole	moment	is	V	times	
the	electric	or	magnetic	polarization	(see	eq.	6.36).	

Problem	34:	Field	on	the	external	side	of	the	surface	of	a	polarized	sphere	

Verify	the	validity	of	eq.	3.41	giving	the	value	of	next	on	the	surface	of	a	sphere.	

Solution	
The	quoted	expression	is	

	  			n
ext(!r S )=N− ŝ(!r S )ŝ(!r S ), 	 (6.90)	

where,	as	for	the	sphere	a	=	b	=	c	=	R,	

	
 		
ŝ(!r S )= x2

a4
+ y

2

b4
+ z

2

c4
⎛

⎝⎜
⎞

⎠⎟

−12 x
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x̂ + y

b2
ŷ + z

c2
ẑ

⎛
⎝⎜

⎞
⎠⎟
=
!r S

R
, where R= !r S . 	 (6.91)	

From	eqs.	3.66,	N	and	the	surface	value	of	the	external	depolarization	tensor	for	
the	sphere	of	radius	R	are	given	by	
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. 	 (6.92)	

In	matrix	notation	 !!ŝ(
r )ŝ(r ) 	is	
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⎟
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⎟
. 	 (6.93)	

Therefore,	the	two	values	coincide	and	

	  !!!n
ext(r S )=N− ŝ(r S )ŝ(r S ). 	 (6.94)	
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Problem	35:	Microscopic	origin	of	depolarization	tensors	

Discuss	the	derivation	of	depolarization	tensors	from	microscopic	magnitudes	
such	as	the	tensor	m	discussed	at	page	24.	
Solution	

Apart	from	the	argument	given	at	page	24,	it	is	an	open	problem	of		interest	for	
the	discussion	of	the	relationship	between	microscopic	and	macroscopic	
electromagnetic	fields.	

Energy,	forces	and	torques	

Problem	36:	Energy	of	a	dielectric	sphere		

A	dielectric	sphere	of	radius	R	is	uniformly	polarized	by	a	uniform	applied	field	
 !!

E0 .	Verify,	integrating	 !!ε0


EP i

EP 	over	all	space,	that	there	is	no	contribution	to	the	

total	free	energy	from	the	depolarization	field	 !!

EP . 	

Solution	

The	external	field	 !!

EP
ext 	generated	by	the	sphere’s	polarization	 !


P 	is	the	dipolar	

one	eqs.	6.10,	A4.1	and	6.8:	

	
 		
!
EP
ext(!r )= k1

3( !p i
!r)!r − r2!p
r5

, where !p =V !P =V
3ε0(κ −1)
κ +2

!
E0. 	 (6.95)	

The	contribution	to	the	energy	of	this	external	field	is	(see	eqs.	A4.11	and	A1.4):	

	
 		
Fe
ext =

ε0
2λ

!
EP
ext(!r )i !EPext(

!r)d3r
V '
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ε0
λ

4πk1
3

⎛

⎝⎜
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2
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V
= 19

λ
ε0
V
!
P i
!
P 	 (6.96)	

The	contribution	to	the	energy	of	the	internal	depolarization	field	 !!

EP
int 	is	(eqs.	

2.12	and	3.66)	

	

 			

!
EP
int = − λ

ε0
N i
!
P = − λ

3ε0
!
P , !DPint = ε0

!
EP
int +λ

!
P = 23λ

!
P ,

F inte = 1
2λ
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EP
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DP
intd3r

V
∫∫∫ = V

2λ
!
EP
int i
!
DP
int( ) = −19

λ
ε0
V
!
P i
!
P ,
	 (6.97)	

which	cancels	the	external	contribution.	

Problem	37:	Fermi’s	contact	interaction	

For	an	atom,	find	the	energy	of	interaction	between	the	electronic	current	
density	and	the	magnetization	of	the	nucleus.	Approximate	the	latter	by	a	
uniformly	magnetized	triaxial	ellipsoid.	Compare	with	the	standard	expression	of	
Fermi	‘s	contact	term	UF	and	discuss	the	origin	of	the	difference.	
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UF = −

1
32λµ0

!
µn i
!me , 	 (6.98)	

where	 	
!
µn is	the	nuclear	magnetic	moment	and	 		

!me 	the	electronic	magnetization	
over	the	nucleus181.	

Problem	38:	Torques	on	spheroids	
Compute	the	torque	exerted	over	an	isotropic	dielectric	spheroid	immersed	in	a	

uniform	applied	field.	Is	it	possible	to	obtain	the	value	of	the	dielectric	
susceptibility	only	from	this	value?	

Solution	

The	force	couple	is	given	by	eqs.	5.21	that,	in	the	spheroid’s	principal	system	
with	z	as	the	symmetry	axis,	gives	
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	 (6.99)	

The	expression	of	the	field	components	in	spherical	coordinates	is	

	

 		

E0
x = E
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y = E
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0 cosθ ,
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(6.100)	

The	torque	is	normal	to	the	plane	determined	by	the	symmetry	axis	and	the	field,	
and	tends	to	turn	the	largest	semiaxis	towards	the	field.	The	value	of	k	can	be	

																																																								
	

181	 C.	E.	Solivérez;	The	contact	hyperfine	interaction:	an	ill	defined	problem;	J.	Phys.	Solid	St.	Phys.	
vol.	13,	L1017-L1019;	1980.	Although	the	problem	is	of	quantum	nature,	the	discussion	is	
made	in	terms	of	classical	electromagnetism.	
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determined	from	the	amplitude	of	the	function	τ (θ	)	.	As	all	other	parameters	are	
known,!χemay	then	be	found	by	solving	a	second	degree	equation.	

Problem	39:	Torque	exerted	over	an	anisotropic	dielectric	sphere	

A	spherical	and	anisotropic	dielectric	is	suspended	in	a	uniform	and	fixed	
electric	field.	Express	the	torque	exerted	over	the	sphere	in	terms	of	the	principal	
values	of	the	electric	susceptibility	tensor.	

Solution	
For	a	sphere	of	anisotropic	uniaxial	dielectric	(see	Table	5)	it	is	sufficient	to	

study	the	force	couple	on	any	plane	containing	the	symmetry	axis,	using	as	
coordinates	the	principal	system	of		the	susceptibility	tensor.	z	axis	is	taken	to	be	
the	symmetry	of	revolution	one	and	plane	yz	as	containing	the	applied	field	 		

!
E0. 	

From	eqs.	5.21	and	3.66	it	is	then	obtained	
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	 (6.101)	

The	force	couple	is	then	
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	 (6.102)	

For	an	applied	field	in	quadrant	xy,	the	exerted	torque	makes	the	body	align	its	
smallest	susceptibility	eigenvalue	with	the	applied	field.	

Problem	40:	Torque	on	a	magnetized	disk	

A	constant	thickness	circular	disk	of	Fe-Si	alloy	is	permanently	magnetized	in	a	
uniform	way.	The	disk	is	suspended	from	its	edge	in	a	uniform	and	horizontal	
magnetic	field.	Determine	the	value	of	its	magnetization	from	the	torque	exerted	
by	the	field	on	the	disk.	See	the	experimental	configuration	at	Figure	21.	

Solution	
A	circular	disk	of	thickness	much	smaller	than	its	diameter	may	be	aproximated	

by	an	oblate	spheroid	of	polar	semiaxis	equal	to	half	its	thickness	and	an	equatorial	
semiaxis	equal	to	its	radius.	From	the	discussion	at	page	111	about	magnetization	
of	a	compass’s	needle	,	the	magnetization	vector	should	lie	on	the	equatorial	plane.	
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If	the	disk	can	rotate	freely,		The	magnetization	will	align	with	the	field	so	that	the	
free	energy	eq.	5.35	has	it	minimum	value.	

The	coordinate	system	is	chosen	so	that	the	suspension	is	parallel	to	the	z	axis,	
the	magnetization	lies	on	the	plane	xy	and	the	field	lies	along	the	direction	x.	Then	

	
 		
!
τ (ϕ)= !m×

!
B0 =VM cosϕ x̂ + sinϕ ŷ( )×B0 x̂= −VMB0 sinϕ ẑ. 	 (6.103)	

The	value	of	M	is	obtained	from	the	amplitude	of	the	torque	as	a	function	of	ϕ.	

Problem	41:	Torque	on	a	very	long	superconducting	right	circular	cylinder	

Compute	the	torque	exerted	over	a	very	long	cylindrical	superconductor	
suspended	normally	to	its	symmetry	axis	in	horizontal	and	uniform	magnetic	field.	

Solution	

The	torque	over	a	body	of	large	volume	is	very	large,	and	large	bodies	are	very	
difficult	to	keep	at	the	temperature	where	they	are	superconductors.	The	problem	
is	unrealistic	and	without	practical	interest.	

Problem	42:	Depolarization	tensor	of	inifinitesimally	thin	shells	

Verify	that	all	infinitesimally	thin	shells	of	ellipsoidal	shape	have	a	
depolarization	tensor	similar	to	that	of	the	spherical	one	of	eq.	5.56:	

	  			N = ŝ(!r S ) ŝ(!r S ), next =0. 	 (6.104)	

where	 !!ŝ(
r S ) 	is	the	unit	vector	normal	at	point	 !r S of	the	body’s	surface	(see	eq.	

A7.8).	
Solution	

Use	the	superposition	principle	for	the	potential	of	ellipsoids	with	constant	
density	of	charge.			

Problem	43:	Applications	of	thin	shells	

Explore	the	application	of	thin	ellipsoidad	shells	for	solving	a	practical	problem.	
Solution	

Open	answer.	
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Appendix	1:	
Electromagnetic	units	

The	different	systems	of	electromagnetic	units	are	characterized	by	the	
constants	appearing	in	the	basic	laws	of	electromagnetism.	While	almost	without	
exception	engineers	use	the	International	System	of	Units182	(SI),	physicists	often	
use	other	systems	more	convenient	for	their	particular	field	of	studies.	For	that	
reason	these	general	constants	are	used	in	this	book,	following	Jackson’s	ideas183.	
A	few	other	constants	are	next	discussed	that	depend	on	the	definition	of	certain	
derived	but	relevant	magnitudes,	as	electric	and	magnetic	susceptibilities	and	
moments.	

Coulomb’s	Law	

	 	 (A1.1)	

defines	in	some	systems	the	unit	of	electric	charge,	through	k1.	The	constant	in	
Gauss’s	Law	is	a	consequence	of	this	definition,	

	 	 (A1.2)	

Electric	displacement	is	defined	in	terms	of		electric	field	and	electric	
polarization	density,	
	 	 (A1.3)	

where	ε0	is	vacuum	permittivity.	λ	is	an	adimensional	constant	that	makes	electric	
displacement	a	magnitude	of	the	same	species	than	electric	polarization.	

For	all	the	systems	of	units	here	discussed	it	happens	that	

	
		
4πk1ε0

λ
=1. 	 (A1.4)	

The	electric	dipole	moment	p	of	two	point	charges	+q,	-q	at	distance	d	is		

																																																								

	
182	 Electromagnetic	units	at	the	Bureau	International	des	Poids	et	Mesures	(BIPM),	SI	maintenance	

agency.	
183	 Jackson,	pp.	611-621.	The	book	does	not	analyze	the	relationships	between	E	and	B,	P	and	M	

brought	by	the	theory	of	relativity,	which	surely	stablishes	more	relationships	between	
constants,	perphaps	those	given	by	eqs.	A1.4	and	A1.10.	

!!
F = k1

qq'
r2
,

 !!

E id

S

S
∫∫ = 4πk1Q.

 !!

D= ε0


E +λ


P ,
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p=

4πk1ε0
λ

q·d = q ⋅d , 		 (A1.5)	

where	eq.	A1.4	was	used.	

The	unit	of	electric	current	I	is	defined	by	the	force	per	unit	length	exerted	on	
two	parallel	conductors	a	distance	d	apart:	

	 	 (A1.6)	

From	Maxwell’s	equations	A1.13,	constants	k1	and	k2	are	related	by	the	velocity	
of	light	c,	that	of	propagation	of	electromagnetic	waves	in	vacuum,	

	
		

k1
k2

= c2. 	 (A1.7)	

The	unit	of	magnetic	induction	is	defined	by	the	magnetic	part	of	the	Lorentz	
force	exerted	over	a	charge	q	moving	at	velocity	 :	

	  		
!
F = k3q

!v ×
!
B. 	 (A1.8)	

Ampère’s	Law	is	the	magnetic	analogue	of	Gauss’s	Law,	

	
 		

!
B id
!
l

C
"∫ =

4πk2
k3

I. 	 (A1.9)	

The	relationship	between	magnetic	induction	 ,	magnetic	field	and	
magnetization	is	
	 	 (A1.10)	

where	µ0	is	vacuum	magnetic	permeabiliity.	λ'	is	an	adimensional	constant	that	
makes	H	and	M	magnitudes	of	the	same	species.	The	source	of	magnetic	field	

 		
!
H_ 	is	

magnetized	matter,	reason	why	it	is	more	often	used	in	this	book	than	
 		
!
B._ 	

For	the	systems	of	units	discussed	here	it	happens	thats	

	
		

4πk2
µ0k

2
3λ '

=1. 	 (A1.11)	

The	magnetic	dipole	moment	of	a	plane	coil	of	wire	with	electric	current	I	that	
encircles	an	area	A	is	
	 		m= k3 I·A. 	 (A1.12)	

The	constants	appearing	in	Maxwell’s	equations	are	the	following:	

!!
ΔF
Δl

=2k2
I ⋅I '
d
.

 !
v

 !

B

 !!

B = µ0(


H +λ ' M),
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∇ i
!
D= λ ρ , ∇×

!
E = −k3

∂
!
B
∂t
,

∇
!
B =0, ∇×

!
H = k3 λ '!J + ∂

!
D
∂t

⎛
⎝⎜

⎞
⎠⎟ ,
	 (A1.13)	

where	ρ	is	the	volume	density	of	electric	charge	and	 	
!
J the	surface	density	of	

electric	current.	
For	the	SI	system	the	given	constants	have	the	following	values:	

	

		

k1 =
1

4πε0
=10−7c2 kg ⋅m

3

C2s2
, k2 =

µ0
4π = 10

−7kg ⋅m
C2

, k3 =1,

ε0 =
107
4πc2

C2s2

kg ⋅m3 , λ =1, µ0 = 4π10−7 kg ⋅m
C2

, λ '=1.
	 (A1.14)	

The	following	table	gives	the	values	for	all	the	common	systems	of	
electromagnetic	units:	SI	or	rationalized			MKS,	ESU	or	electrostatic	CGS,	EMU	or	
electromagnetic	CGS,	Gauss	and	HL	or	Heaviside-Lorentz.	Gauss	system	is	the	one	
prefered	by	physicist	for	the	study	of	relativistic	transformations	because	it	makes	
explicit	the	speed	of	light	c.		
	

System	 	 	 	 	 λ  λ'	
		
4πk1ε0

λ
 
		

4πk2
µ0k

2
3λ '

 

SI	 1/4𝜋𝜀0 𝜇0/4𝜋 1	 184	 1 4𝜋10-7 1 1 1 

ESU	 1	 1/c2	 1	 1	 4π	 1/c2	 4π	 1	 1	

EMU	 c2	 1	 1	 1/c2	 4π	 1	 4π	 1	 1	

Gauss	 1	 1/c2	 1/c	 1	 4π	 1	 4π	 1	 1	

HL	 1/4π	 1/4π c2	 1/c	 1	 1	 1	 1	 1	 1	

Table	4.	The	five	common	systems	of	electromagnetic	units.	
	

																																																								
	

184	 See	eq.	A1.14.	

!!k1 !!k2 !!k3 !ε0 !µ0
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Appendix	2:	
Vectorial	Operators		

The	following	properties	of	operator	∇	(nabla	or	del)	are	frequently	used	in	this	
book185.	

	 	 (A2.1)	

	

 		
∇ 1
!r− !r '

= −
!r − !r '
!r− !r ' 3

. 	 (A2.2)	

	 	 (A2.3)	

	 	 (A2.4)	

	 	 (A2.5)	

	
 		∇ i
!
F(!r )× !G(!r )( ) = !G(!r )i∇×

!
F(!r )− !F(!r )∇×

!
G(!r ). 	 (A2.6)	

	 	 (A2.7)	

	
 		∇× f (!r )!F(!r )( ) = f (!r ) ∇×

!
F(!r )( )+ ∇f (!r )( )× !F(!r ). 	 (A2.8)	

	
 		∇×

!
F ×
!
G( ) = !G i∇( ) !F − !F i∇( ) !G + !F ∇ i

!
G( )− !G ∇ i

!
F( ). 	 (A2.9)	

	 	

																																																								

	
185	 Korn	and	Korn,	pp.	157-162.	

!!
∇ = x̂ ∂

∂x
+ ŷ ∂

∂ y
+ ẑ ∂

∂z
.

 !!
Δ =∇ i∇ = ∂2

∂x2αα
∑ .

 !!

∇

F(r )i G(r )⎡⎣ ⎤⎦

=

F(r )i∇( ) G(r )+ G(r )i∇( ) F(r )+ F(r )× ∇×


G(r )( )+ G(r )× ∇×


F(r )( ).

 !!∇ i f (r ) F(r )( ) = f (r )∇ i

F(r )+∇f (r )i F(r ).

 !!∇×∇f (r )=0.
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Appendix	3:	
Integral	theorems	of	vector	calculus	

Laplacian	of	a	point	charge’s	potential		
Eq.	A3.7	that	defines	the	trace	of	the	internal	depolarization	tensor	uses	the	

value	of	the	following	expression:	

	
 		
∇ i∇ f (!r ')

!r− !r '
d3r '

V
∫∫∫

⎛

⎝
⎜

⎞

⎠
⎟ = ΔI '(!r ), 	 (A3.1)	

which	coincides	with	 !!ΔI(
r ) 	cuando	 !!f (

r ')=1. 	
For	 !!
r ≠ r ' 	the	order	of	integrating	and	taking	derivatives	may	be	permuted.	

	

 		

Δ f (!r ')
!r− !r '

d3r '
V
∫∫∫ = f (!r ')Δ 1

!r− !r '
⎛

⎝
⎜

⎞

⎠
⎟ d3r '

V
∫∫∫ ,

where Δ 1
!r− !r '

⎛

⎝
⎜

⎞

⎠
⎟ =∇ i∇ 1

!r− !r '
⎛

⎝
⎜

⎞

⎠
⎟ = −∇ i

(!r− !r ')
!r− !r ' 3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= −∇ i(!r− !r ')
!r− !r ' 3

−∇ 1
!r− !r ' 3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
i(!r− !r ')= − 3

!r− !r ' 3
+3(
!r− !r ')i(!r− !r ')
!r− !r ' 5

=0 ∀ !r ≠ !r ',

	(A3.2)	

where	eq.	A2.5	was	used.	It	is	thus	proved	that	the	laplacian	vanishes	for	 !!
r ≠ r '. 	

The	case	where	a	field	point	coincides	with	a	source	point	—only	possible	
inside	the	material	body—	is	more	difficult.	It	is	not	uncommon	to	find	books	on	
electromagnetism	with	erroneous	proofs	that	by	mere	chance	give	the	right	
value186.	That	is	why	a	proof	is	given	here	that	circumvents	the	common	pitfalls.	

The	order	of	calculation	of	the	integral	and	the	derivatives	may	be	exchanged	
only	when	the	integrand	has	integrable	singularities187.	It	is	therefore	convenient	

																																																								

	
186	 See,	for	instance	Jackson,	p.	13	and	Reitz,	p.	44,	where	they	take	the	double	derivative	inside	the	

integral.	V.	Hnizdo,	Eur.	J.	Phys.	21,	pp.	L1-L3	(2000)	makes	errors	like	using	Gauss’s	Law	as	
different	from	the	divergence	theorem.	

187	 Hnizdo,	;	Generalized	second-order	partial	derivatives	of	1/r:	European	Journal	of		Physics,	vol.	
32,	pp.	287-297;	2011.	
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to	divide	the	body’s	volume	in	two	parts:	a	spherical	volume	of	radius	R0	around	
the	singularity	—radius	that	at	the	end	will	tend	to	0—	and	the	rest	of	the	body,	
volume	V'	=	V	-	V0,	as	illustrated	at	Figure	25.	

That	is,	for	 !
r 	fixed	but	arbitrary,	

	

 		

I '(!r )= f (!r ')
!r− !r '

d3r '
V
∫∫∫

= f (!r ')
!r− !r '

d3r '
V−V0

∫∫∫ + f (!r ')
!r− !r '

d3r '
V0

∫∫∫ .
	 (A3.3)	

As	shown	before,	the	laplacian	of	the	first	
integral	vanishes	so	that	the	calculation	is	
reduced	to	

	
Figure	25.	Isolating	the	

singularity	inside	the	body.	

	

 		

Δ f (!r ')
!r− !r 'V

∫∫∫ d3r '= Δ f (!r ')
!r− !r 'V0

∫∫∫ d3r '

=∇ i∇ f (!r ')
!r− !r '

d3r '
V0

∫∫∫ = −∇ i f (!r ')∇' 1
!r− !r '

⎛

⎝
⎜

⎞

⎠
⎟ d3r '

V0

∫∫∫ .
	 (A3.4)	

When !!I '(
r ) 	(eq.	3.8)	is	a	continuous	function	with	well	behaved	derivatives,	

which	happens	for	any	continuos	and	differentiable	function !!f (
r ') ,	the	gradient	

theorem	eq.	A3.9	may	be	used	to	reduce	the	last	volume	integral	to	a	surface	one	
without	singularities:	

	

 		

∇ i f (!r ')∇' 1
!r− !r '

⎛

⎝
⎜

⎞

⎠
⎟ d3r '

V0

∫∫∫ =∇ i f (!r ') d
2!r '
!r− !r 'S0

"∫∫ = f (!r ')∇ i
d2!r '
!r− !r '

⎛

⎝
⎜

⎞

⎠
⎟

S0

"∫∫

= f (!r ')∇ 1
!r− !r '

⎛

⎝
⎜

⎞

⎠
⎟ id2!r '

S0

"∫∫ = − f (!r ')(
!r− !r ')id2!r '

R0
3

S0

"∫∫ = f (!r ')d
2r '
R0
2

S0

"∫∫ .
	 (A3.5)	

where	 		d2!r ' is	the	vectorial	element	of	area.	

The	following	limit	is	next	taken:	

	
 		
lim
R0→0

f (!r ')d
2r '
R0
2

S0

"∫∫ = f (!r )lim
R0→0

d2r '
R0
2

S0

"∫∫ = 4π f (!r ), 	 (A3.6)	

where	use	was	made	of	eq.	A2.5,	of	the	fact	that	the	vectors	in	the	scalar	product

 		(
!r− !r ')id2!r ' 	are	antiparallel,	and	the	definition	of	solid	angle.	At	all	steps	the	
integrands	have	integrable	singularities.	
Therefore		
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Δ f (!r ')d3r '

!r −!r 'V
∫∫∫ =

−4π f (!r ) for !r ∈V
0 for !r ∉V
⎧
⎨
⎩

, 	 (A3.7)	

Divergence,	gradient	and	rotor	theorems	
The	divergence	or	Gauss-Ostrogradsky’s	theorem	stablishes	the	following	

identity,188,189	
	 	 (A3.8)	

where			r̂ 	is	the	unit	vector	normal	to	surface	S	and	outgoing	from	volume	V.	In	its	
standard	formulation	the	theorem	requires	that	the	field	 	

!
F 	and	its	first	derivatives	

have	no	singularities	in	the	región	V	of	integration	and	its	boundary	S.	It	is	also	
valid	for	fields	with	integrable	singularities.	Such	conditions	are	not	fulfilled	for	the	
point	charge	field	eq.	1.3.	

The	gradient	theorem	is	a	corollary	of	the	divergence	theorem190,191	

	 	 (A3.9)	

Another	corollary	is	the	curl	theorem192,193:	

	
 		

∇×
!
F(!r )d3r

V
∫∫∫ = −

!
F(!r )×d2!r

S
"∫∫ . 	 (A3.10)	

Extension	of	the	divergence	theorem	
The	standard	formulation	of	the	divergence	theorem	is	insufficient	for	

applications	to	electromagnetism,	where	the	field	sources	are	often	singularities	
like	point	charges,	lines	of	charge,	surface	densities	of	charge	and	current,		and	
step	discontinuities	of	polarizations.	The	extension	of	the	divergence	theorem	is	
done	next	for	two	types	od	singularities;	it	may	also	be	done	for	the	line	of	
charge194,	but	it	is	of	no	interest	here.	

																																																								

	
188	 Korn	and	Korn,	p.	163.	
189	 Kuntzmann,	pp.	329-332.	
190	 Korn	and	Korn,	p.	163.	
191	 Kuntzmann,	p.	339.	
192	 Korn	and	Korn,	p.	163.	
193	 Kuntzmann,	p.	340.	
194	 Kuntzmann,	p.	371.	

 !!
∇ i

F(r )d3r

V
∫∫∫ =


F(r )id2r

S
∫∫ ,

 !!
∇f (r )d3r

V
∫∫∫ = f (r )d2r

S
∫∫ .
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Point	charge	type	singularities	

The	extension	of	the	divergence	theorem	for	point	charges195,	usually	not	
claimed	as	different	from	the	original	one196,	is	known	in	physics	as	the	
electrostatic	Gauss’s	Law.	It	is	applied	to	fields	of	the	following	kind:	

	 	 (A3.11)	

In	order	to	apply	the	standard	divergence	theorem	it	is	necessary	to	exclude	from	
the	region	V	of	integration	an	infinitesimal	volume	Vj	around	every	singularity.	The	
exclusions	are	indicated	here	by	replacing	volume	V	by	V	',	replacing	the	original	
integral	by	what	mathematicians	call	principal	value	integral.	The	process	is	
similar	to	that	previously	depicted	at	Figure	25,	except	that	one	must	include	the	
flux	at	the	surfaces	Sj		that	are	the	boundaries	of	each	volume	Vj.	Therefore	

	 	 (A3.12)	

where	the	sum’s	negative	sign	comes	from	the	fact	that	the	vectores	are	entrant	to	
the	volume,	not	salient	as	required	by	the	divergence	theorem.	Except	for	the	
factor	qj,	all	the	integrals	in	the	sum	are	equal	because	they	subtend	the	same	solid	
angle197,	

	 	 (A3.13)	

where	a	spherical	coordinate	system	is	used.	
Resulta	finalmente	

	 	 (A3.14)	

In	the	formulation	of	the	electrostatic	Gauss’s	theorem, !

F is	the	electric	field !


E 	

and	the	equation	is	presented	in	the	following	way:	

	
 		

!
E(!r )id2!r

S
"∫∫ = 4πk1 ρ(!r )d3r

V '
∫∫∫ +4πk1 qj ,

j
∑ 	 (A3.15)	

where	the	relationship	between !

E and	the	volume	charge	density	ρ 	has	been	

used198.	The	most	general	expression	of	the	relationship	between	the	flux	of	the	

																																																								

	
195	 Kuntzmann,	p.	369.	
196	 Reitz,	p.	35.	
197	 Kemmer,	p.	71.	
198	 Reitz,	p.	85	eq.	4-29.	

 !!


F(r )=

qj(
r − rj )
r − rj

3
j
∑ .

 

∇ i

F(r )d 3r

V '
∫∫∫ =


F(r ) i d 2r

S
∫∫ −

qj (
r − rj ) i Ŝ j
r − rj

3 d 2r '
Sj
∫∫

j
∑ ,

 

(r − rj ) i d

Sj

r − rj
3 = sen(θ )dθ dϕ

Sj
∫∫ = 4π ,

Sj
∫∫

 
∇ i

F(r )d 3r

V '
∫∫∫ =


F(r ) i d 2r

S
∫∫ − 4π qj .

j
∑



Depolarization	tensor	method	 157	

electric	field	and	the	distributions	of	free	charge	is	obtained	upon	addition	of	the	
surface	densities	of	charge	(step	discontinuities	discussed	in	next	section)	and	
linear	densities	of	charge	(not	done	here).	The	polarization	charges	and	currents	
are	discussed	in	the	main	text,	case	by	case	

Step	discontinuities	
Generalized	divergence	theorem	

The	generalization	is	given	here	of	the	divergence	theorem	for	the	case	in	which	
the	field	has	a	step	discontinuity	through	a	surface199,	that	in	this	book	will	be	the	
body’s	surface.	
A	field	is	said	to	have	a	step	discontinuity	

(also	called	jump	discontinuity	or	discontinuity	
of	the	first	kind)	through	a	surface	Σ		when	it	
is	continuous	and	finite	in	any	neighbourhood	
of	Σ 	but	its	limit	values	over	both	sides	of	Σ 	
are	different.	Defining	conventionally	a	
positive	and	a	negative	side	of	Σ	200	(see	
Figure	26)	and	identifying	each	limit	with	the	
corresponding	upper	+	or	-	index,	one	has	

	 	 (A3.16)	

		
Figure	26.	Step		

discontinuity	surface	Σ .	

The	divergence	theorem	eq.	A3.8	cannot	be	applied	to	a	region	than	contains	a	
step	discontinuity.	The	problem	is	not	that	the	integrals	involved	cannot	be	
computed	for	such	surfaces201,		but	the	omission	of	the	surface.	Such	integrals	have	
to	be	divided	and	computed	separately	for	each	of	the	regions	that	have	Σ	as	a	
boundary.	In	the	case	of	Figure	26	the	divergence	theorem	should	not	be	applied	
for	the	whole	of	volume	V,	but	to	the	two	regions	determined	by	Σ.	A	
mathematically	rigorous	way	of	justifying	this	is	to	exclude	an	infinitesimal	volume	
V0	around	Σ	,	volume	delimited	by	the	surface	S0	identified	in	the	figure	with	
dashed	lines.	

The	application	of	the	theorem	in	the	indicated	way	gives	

	 	 (A3.17)	

When	the	vector	field	vectorial	is	finite	in	any	neighbourhood	of	Σ,	so	it	is	the	flux	
on	the	edge	of	surface	S0	también	lo	is	and	tends	to	0	when	the	thickness	of	V0	goes	
to	0.	That	is,	the	principal	value	integral	should	be	computed,	which	will	be	
indicated	in	this	book	with	the	specification	lim	V0	→	0.	Taking	this	limit	does	not	
modify	the	volume	integral’s	value.	

																																																								

	
199	 Kuntzmann,	pp.	371-372.	
200	 En	este	libro	Σ		is	la	superficie	del	cuerpo	and	el	valor	positive	del	campo	is	el	exterior	a	ella.	
	201	 See,	for	instance,	Morse	and	Feshbach,	p.	34.	

 

F+ (r )−


F− (r ) ≠ 0.

 
∇ i

F(r )d 3r

V−V0
∫∫∫ =


F(r ) i d


S

S
∫∫ +


F(r ) i d


S

S0
∫∫ .
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In	the	aforesaid	limit	the	previous	equation	gives	

	

	
Therefore,	
	

 		
∇ i
!
F(!r )d3r

V
∫∫∫ =

!
F(!r )id!S

S
"∫∫ −

!
F +(!r )− !F −(!r )( )id !Σ

Σ
"∫∫ . 	 (A3.18)	

where	 !d

Σ 	is	a	vector	outgoing	from	the	positive	side	of	the	surface.	The	equation	

is	the	generalization	of	the	divergence	theorem	for	the	case	where	the	field	has	a	
step	discontinuity	over	a	closed	or	open	surface	Σ.	

A	more	compact	and	“elegant”	demonstration	may	be	given	by	using	
distribution	theory,	but	this	requires	many	other	concedpts,	as	an	extension	of	the	
derivative	operation202	which	exceeds	by	far	the	requisite	of	a	first	course	of	vector	
analysis	imposed	in	this	book.	

Generalized	rotor	theorem	

If	in	theorem	A3.18	 !

F 	is	replaced	by	 !


F × c ,	where	 !

c 	is	an	arbitrary	constant	
vector,	one	gets	

	

 		

∇ i
!
F(!r )× !c( )d3r

V
∫∫∫ = !c i ∇×

!
F(!r )d3r

V
∫∫∫

=
!
F(!r )× !c( )id!S

S
"∫∫ −

!
F +(!r )− !F −(!r )( )× !c id

!
Σ

Σ
"∫∫

= !c i d
!
S ×
!
F(!r )( )

S
"∫∫ − !c i d

!
Σ ×

!
F +(!r )− !F −(!r )( )

Σ
"∫∫ ,

	 (A3.19)	

where	eq.	A2.6	and	the	cyclic	property	of	the	scalar	triple	product	were	used.	As	 !
c 	

is	an	arbitrary	vector,	it	is	obtained	

	
 		

∇×
!
F(!r )d3r

V
∫∫∫ = −

!
F(!r )×d!S

S
"∫∫ +

!
F +(!r )− !F −(!r )( )×d !Σ

Σ
"∫∫ , 	 (A3.20)	

Polarized	bodies	

All	the	bodies	studied	in	this	book	are	characterized	by	a	polarization	vector	 	
!
Q

with	the	following	properties:	

• It	is	uniform	and	non-vanishing	inside	the	body	V;	
• it	vanishes	outside	the	body;	

																																																								

	
202	 See,	for	instance,	Farassat,	F.,	Introduction	to	Generalized	Functions	with	applications	in	

Aerodynamics	and	Aeroaccoustics,	NASA,	Langley	Research	Center,	April	1996.	

 

∇ i

F(r )d 3r

V
∫∫∫ = lim

V0→0
∇ i

F(r )d 3r

V−V0
∫∫∫

=

F(r ) i d


S

S
∫∫ −


F+ (r ) i d


Σ

Σ
∫∫ +


F− (r ) i d


Σ

Σ
∫∫

=

F(r ) i d


S

S
∫∫ −


F+ (r )−


F− (r )( ) i d Σ

Σ
∫∫
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• it	has	a	variable	step	discontinuity	through	the	body’s	closed	surface	S,	the	S	
surface	of	the	previous	theorems;		

If	the	integration	region	is	V	'	with	frontier	S	'	that	contains	both	V	and	Σ,	it	is	
obtained	for	eq.	A3.18	

	

 		

∇ i
!
F(!r )d3r

V '
∫∫∫ = ∇ i

!
F(!r )d3r

V
∫∫∫

=
!
F(!r )id!S +

S '
"∫∫

!
F −(!r )id !Σ

Σ
"∫∫ =

!
F −(!r )id !Σ

Σ
"∫∫ ,

	 (A3.21)	

because	 !∇ i

F 	and	 !


F 	vanish	outside	V.	

In	the	same	say,	eq.	A3.20	reduces	to	

	
 		

∇×
!
F(!r )d3r

V
∫∫∫ = −

!
F −(!r )×d !Σ

Σ
"∫∫ . 	 (A3.22)	
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Appendix	4:	
Field	of	an	electric	dipole	

General	expression	

The	electric	field	 !!

E(r ) 	generated	at	point	field	 	!r 	by	a	body	with	electric	dipole	

moment	 !
p 	placed	at	the	origin	is	

	

 		

!
E(!r )= k1

3( !p i
!r )!r − r2 !p
r5

. 	 (A4.1)	

The	field	 !!

E j 	generated	by	a		dipole	 	located	at	source	point	 	is203	

	

 			

!
E j(!r )= k1

3
!
d j(!r )

!
d j(!r )i !pj( )−d j(r)2 !pj
d j(r)5 ,

= k1
3
!
d j(!r )

!
d j(!r )−d j(r)21
d j(r)5 i

!pj , where d j(!r )= !r − !r j ,
	 (A4.2)	

and	1	is	the	unit	dyadic	such	that	for	an	arbitrary	vector	 !

C 	it	is	

	  			1i
!
C =
!
C . 	 (A4.3)	

The	upper	index	indicates	the	source	point	and	the	argument	the	field	point	(see	
p.	11).	

In	matrix	representation	the	previous	expression	becomes	

	 	 (A4.4)	

																																																								

	
203	 Reitz,	p.	39	eq.	2-36.	

 !!
pj  !!r j

 !!!E(
r )= k1mj ⋅pj ,
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where	

	 	 (A4.5)	

Dipolar	field's	energy	

A	polarizable	sphere	of	radius	R	immersed	in	an	applied	uniform	field	 !!

C 0 	

generates	outside	a	dipolar	field	 		
!
Cq(!r ). 	Depending	on	the	kind	of	material	

(dielectric,	conductor,	diamagnetic,	paramagnetic	or	superconductor)	and	applied	
field	(electric	or	magnetic)	the	constants	and	the	dipolar	moments	will	vary.	
Nevertheles,	in	all	cases,	when	the	center	of	the	sphere	is	the	origin	of	the	
coordinate	system,	the	energy	stored	in	the	external	field	is	proportional	to	the	
following	integral:	
	

 		
!
Cq(!r )i !Cq(!r )d3r

V '
∫∫∫ , 	 (A4.6)	

where	 V'	 is	 the	 complementary	 region	 of	 V	 (the	 one	 occupied	 by	 the	 spherical	
body)	and	

	
 		
!
Cq(!r )= 3(

!q i
!r )!r − r2!q
r5

. 	 (A4.7)	

The	integrand	is	then	

	

 		

!
Cq(!r )i !Cq(!r )=

3(!q i
!r )!r − r2!q( )i 3(!q i

!r )!r − r2!q( )
r10

= 9r
2(!q i
!r )2 −6r2(!q i

!r )2 +q2r4
r10

= 3(
!q i
!̂r )+q2
r6

.
	 (A4.8)	

In	an	spherical	coordinate	system	with	z	axis	parallel	to	 	

	

 		

!
Cq(!r )i !Cq(!r )d3r

V '
∫∫∫ = dϕ senθdθ r2Cq(!r )2dr

R

∞

∫
0

π

∫
0

2π

∫

=2π senθdθ r −4 3(!q i r̂)2 +q2( )dr
R

∞

∫
0

π

∫

=2π q2 3cos2θ +1( )senθdθ
0

π

∫
⎛

⎝
⎜

⎞

⎠
⎟ r −4dr

R

∞

∫
⎛

⎝
⎜

⎞

⎠
⎟ .

	 (A4.9)	

 !!!

mj(r )=

3d jx(
r )2 −d j(r )2
d j(r )5

3d jx(
r )d jy(

r )
d j(r )5

3d jx(
r )d jz(

r )
d j(r )5

3d jy(
r )d jx(

r )
d j(r )5

3d jy(
r )2−d j(r )2

d j(r )5
3d jy(

r )d jz(
r )

d j(r )5

3d jz(
r )d jx(

r )
d j(r )5

3d jz(
r )d jy(

r )
d j(r )5

3d jz(
r )2−d j(r )2
d j(r )5

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

.

 !
q
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As	

	

		

3cos2θ +1( )senθdθ
0

π

∫ = 3cos2θ +1( )d(cosθ )
π

0

∫

= cos3θ + cosθ⎡⎣ ⎤⎦π
0
= 4, r −4dr

R

∞

∫ = r
−3

3
⎤

⎦
⎥
∞

R

= 1
3R3 ,

	 (A4.10)	

therefore	

	
 		

!
Cq(!r )i !Cq(!r )d3r

V '
∫∫∫ = 23

4π
R3
q2 =2 4π

3
⎛
⎝⎜

⎞
⎠⎟

2
q2

V
, 	 (A4.11)	

where	V	is	the	volume	of	the	sphere	and	q	the	dipole	moment	norm.	
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Appendix	5:	
	Simmetries	of	the	susceptibility	tensors	of	single	crystals	

Electric	and	magnetic	susceptibilities,	as	any	tensorial	property,	have	
simmetries	that	reflect	those	of	the	single	crystal	they	characterize.	As	illustrated	
by	the	depolarization	tensor	eq.	3.23,	the	relationship	between	components	are	a	
consequence	of	the	tensor’s	transformation	properties.	The	following	table	gives	
the	relationships	for	all	crystalline	systemas204	of	the	components	of	a	single	
crystal’s	susceptibility	tensor	205,	where	the	number	of	independent	ones	are	given	
between	parentheses	in	the	first	column.	

cristalline	
system	 clasification	 principal	

coordinates		
matrix	

representation	

Cubic		
(1)	

isotropic	
or	

anaxial	
any	one	 	

	

χ 0 0
0 χ 0
0 0 χ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
	

trigonal	
tetragonal	
hexagonal	

(2)	

uniaxial	

symmetry	of	
revolution	
around	axis	of	
maximum	
symmetry	  	

χ⊥ 0 0
0 χ⊥ 0
0 0 χ

!

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

	

Orthorhombic	
(3)	 biaxial	

coordinate	
axes	parallel	to	
the	three	
binary	axis	

 	

χ⊥ 0 0
0 χ⊥ 0
0 0 χ

!

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

	

Monoclinic	
(4)	 biaxial	

1	coordinate	
axis	parallel	to	
the	single	
binary	axis	 	

χ11 0 χ13
0 χ22 0
χ13 0 χ33

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
	

Triclinic	
(6)	 biaxial	 none	

	

χ11 χ12 χ31
χ12 χ22 χ23
χ31 χ23 χ33

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
	

Table	5.	Simmetries	of	the	susceptibility	tensor.	
																																																								

	
204	 Dekker,	Capítulo	1.	
205	 Nye,	p.	23	Table	3.	
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Appendix	6:	
Dyadics	

A	dyadic	is	a	mathematical	entity	—a	linear	combination	of	external	products	of	
unit	vectors—	such	that	its	scalar	product	with	a	vector	is	a	vector		Dyadics	may	be	
interpreted	as	vector	operators	such	that	its	action	(scalar	product)	on	a	vector	
gives	another	vector.	In	this	book	dyadics	are	written	in	boldface	italics.	The	
expression	of	n,	the	dyadic	most	often	quoted	here,	is	

	
 			
n(!r )= x̂ jnjk(

!r )x̂k
j ,k
∑ . 	 (A6.1)	

A	particular	case	of	dyadic	is	the	external	product	of	two	vectors:	

	
 			
c =
!
A
!
B = Aj x̂ Bk x̂k .

j ,k
∑ 	 (A6.2)	

Such	is	the	case	of	the	dyadic	!!ŝŝ 	in	eq.	3.33.	
The	scalar	product	of	a	vector	with	a	dyadic	may	be	taken	in	two	different	ways:	

	

 			

ni
!
A= x̂ jnjk x̂k

j ,k
∑ i x̂l Al

l
∑ = x̂ jnjk x̂k i x̂l Al

j ,k ,l
∑

= x̂ jnjkδkl Al
j ,k ,l
∑ = x̂ jnjkAk

j ,k
∑ = x̂ j njkAk

k
∑

j
∑ ;

!
A in= Aj x̂ j i x̂k x̂lnkl

k ,l
∑ = Aj x̂ j i x̂k x̂lnkl

j ,k ,l
∑

j
∑

= Ajδ jknkl x̂l
j ,k ,l
∑ = Ajnjl x̂l

j ,l
∑ = Aknkj x̂ j

j ,k
∑ = x̂ j nkjAk

k
∑

j
∑ .

	 (A6.3)	

The	symmetric	unit	dyadic,	here	written	1,	is	

	
			
1= x̂ j x̂ j

j
∑ = x̂x̂ + ŷŷ + ẑẑ , 	 (A6.4)	

such	that	

	
 			

1i
!
A= x̂ j x̂ j

j
∑ i x̂kAk

k
∑ = x̂ j x̂ j i x̂kAk

j ,k
∑ = x̂ jδ jk Ak

j ,k
∑ = x̂ j Aj

j
∑ =

!
A;

!
A i1=

!
A.

	 (A6.5)	

In	general	
	  		ni

!
A≠
!
A in 	 (A6.6)	
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In	the	same	fashion,	exchanging	the	order	of	vectors	modifies	the	value	of	external	
products.	For	instance,	

	
			
a = x̂ j x̂kajk

j ,k
∑ ≠ x̂k x̂ jajk

j ,k
∑ = x̂ j x̂kakj

j ,k
∑ = at , 	 (A6.7)	

where	the	last	dyadic	is	the	transposed	of	the	first.	
A	dyadic	a	is	symmetric	when	it	is	equal	to	its	transposed	dyadic,	that	is,	when	

its	elements	ajk	are	symmetric:	

	
			
a = x̂ j x̂kajk

j ,k
∑ = at = x̂ j x̂kakj

j ,k
∑ si ajk = akj . 	 (A6.8)	

The	two	ways	of	taking	the	scalar	product	coincide	only	for	symmetric	dyadics:	

	
 			
ni
!
A= x̂ j njkAk

k
∑

j
∑ = x̂ j nkjAk

k
∑

j
∑ =

!
A in. 	 (A6.9)	

When	a	dyadic	is	represented	by	a	square	matrix	—here	written	in	roman	
boldface—	the	two	ways	of	taking	the	scalar	product	correspond	to	different	
representations	of	the	vectors:	

	

 			

If a =

axx axy axz
ayx ayy ayz
azx azy azz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

, A =

Ax
Ay
Az

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
,

A t ia = Ax Ay Az( )i
axx axy axz
ayx ayy ayz
azx azy azz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

Axaxx + Ayayx + Azazx
Axaxy + Ayayy + Azazy
Axaxz + Ayayz + Azazz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

,

a iA =

axx axy axz
ayx ayy ayz
azx azy azz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

i

Ax
Ay
Az

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

axxAx +axyAy +axzAz
ayx Ax +ayyAy +ayzAz
azx Ax +azyAy +azzAz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
.

	 (A6.10)	

The	trace	of	a	dyadic,	of	special	interest	for	the	depolarization	tensor,	is	defined		
as	the	sum	of	its	diagonal	elements.	That	is	

	
			
Tra = ajj

j
∑ = axx +ayy +azz . 	 (A6.11)	

For	dyadics	defined	as	the	external	product	of	two	vectores,	the	trace	coincides	
with	the	scalar	product:	

	
 			
If a =

!
A
!
B , Tra = ajj

j
∑ = AjBj =

j
∑ AxBx + AyBy + AzBz =

!
A i
!
B. 	 (A6.12)	
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Appendix	7:	
Ellipsoids	

Equations	and	main	features		

Equations,	sections,	volume	and	surface	
In	an	arbitrary	orthogonal	system	of	coordinates	the	matrix	equation	of	an	

ellipsoidal	surface206	is207	

	

 			

rt iA−1 ir =1, where r =
x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
, A =

Axx Axy Axz
Axy Ayy Ayz
Axz Ayz Azz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

, 	 (A7.1)	

where	A	is	a	positive	definite	symmetric	matrix	with	eigenvalues	1/a2,	1/b2	and	
1/c2.	The	coordinate	system	that	diagonalizes	A,	here	called	the	principal	system,	
is	the	one	with	origin	at	the	center	of	the	ellipsoid	that	coincides	with	its	principal	
axes208.	Equation	A7.1	then	becomes	

	
		
x2

a2
+ y

2

b2
+ z

2

c2
=1 	 (A7.2)	

where	a,	b	and	c	are	the	lengths	of	the	ellipsoid	semiaxes.	

The	parametric	equations	of	the	ellipsoid	are209	

	
		
x = a⋅cosu⋅sinv , y = b ⋅sinu⋅sinv , z = c ⋅cosv ,

where 0≤u≤2π , 0≤ v ≤π , 	 (A7.3)	

where	the	definition	of	the	angles	u,	v	and	their	domains	are	identical	to	the	angles	
ϕ	and	θ	of	a	spherical	coordinate	system,	but	not	its	relationships	with	the	
componentes	of	the	position	vector	 		!r . 	

The	intersection	of	the	ellipsoid	with	a	plane	is	always	an	ellipse210	that	
becomes	two	overlapping	circumferences	for	spheroids.	

																																																								

	
206	 Those	not	familiar	with	actual	tri-dimensional	ellipsoids	can	profit	from	the	interactive	views	

given	by	the	Wolfram	Demonstration	Project	Ellipsoids	by	Jeff	Bryant.		
207	 Korn	and	Korn,	pp.	74-82.	
208		 Korn	and	Korn,	p.	43.	
209	 Ellipsoid	in	Wolfram	MathWorld,	eqs.	3-5.	
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The	ellipsoid's	volume	V			is	

	
!!
V = 4π3 abc. 	 (A7.4)	

The	surface	area	S	is	

	

		

S =2π c2 +2π ab
senφ E(φ;k)sen2φ +F(φ;k)cos2φ( ) ,

donde a≥b≥ c , cosφ = c
a
, k2 = a

2(b2 − c2)
b2(a2 − c2) ,

	 (A7.5)	

where	F(φ,k)	and	E(φ,	k)	are	the		Legendre's	incomplete	elliptic	integrals	of	the	first	
and	second	kind	discussed	in	Appendix	9.	

Aspect	ratios	

In	daily	life,	a	sphere	is	called	a	sphere	regardless	of	the	radius’	value,	because	
its	apparent	size	varies	with	the	distance	to	the	observer.	In	mathematical	
language	it	is	said	that	all	spheres	are	similar,	the	single	parameter	that	
characterize	them	differs	by	an	arbitrary	multiplication	factor	k.	When	two	
parameters	characterize	the	shape,	as	in	a	rectangle	of	sides	a	and	b,	an	observer	
sees	two	similar	ones	(sides	k·a	and	k·b)	as	having	the	same	aspect.	If	a	≤	b,	the	
ratio	β	=	b/a	is	called	the	aspect	ratio,	where	the	equal	sign	characterizes	the	
square	as	a	particular	case.	By	definition	an	aspect	ratio	has	the	following	range	of	
values,	
	 0	≤	β	≤	1.	 (A7.6)	

It	may	seem	that	the	value	0	should	be	excluded,	but	it	is	convenient	to	include	it	in	
order	to	characterize	the	degenerate	rectangle	with	a	=	∞,	two	parallel	lines.	

In	the	case	of	ellipsoids,	three	parameters	a,	b,	c	characterize	its	shapes.	If	a	a	≥	
b	≥	c,	there	are	two	aspect	ratios,	

	 0	≤	β		=	b/a	≤	1,		0	≤	γ		=	c/a		≤	1.	 (A7.7)	

The	different	shapes	of	ellipsoids	according	to	its	aspect	ratios	are	identified	in	
Table	3.	Notice	that	the	aspect	ratios	of	the	ellipsoid	do	not	suffice	to	tell	apart	a	
right	circular	cylinder	of	inifinite	length	from	an	elliptic	oner.	The	electrostatic	and	
magnetostatic	properties	of	ellipsoidal	bodies	of	the	same	aspect	is	exactly		the	
same	because	similar	ellipsoids	have	the	same	depolarization	tensor	(see	section	
N(0)	is	determined	by	aspect	ratios).	

																																																																																																																																																																		

	
210	 G.	F.	Childe,	Singular	Properties	of	the	Ellipsoid	and	Associated	Surfaces	of	the	Nth	Degree,	

Macmillan,	1861,	pp.	133-137.	
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Normals	to	the	surface	and	central	distances	
The	unit	vector	 normal	to	surface	S	at	point	 !

!r 	may	be	obtained	from	the	
gradient211	of	the	eq.	A7.2:	

	

 		

ŝ(!r )=
∇ x2

a2
+ y

2

b2
+ z

2

c2
⎛
⎝⎜

⎞
⎠⎟

∇ x2

a2
+ y

2

b2
+ z

2

c2
⎛
⎝⎜

⎞
⎠⎟

=

x
a2
x̂ + y

b2
ŷ + z

c2
ẑ

x2

a4
+ y

2

b4
+ z

2

c4

. 	 (A7.8)	

It	may,	for	instance,	be	easily	checked	that	this	vector	is	normal	to	the	surface	of	
the	ellipsoid	at	the	intersections	with	each	of	the	three	cartesian	axes	and	on	the	
ellipses	determined	by	the	planes	defined	by	any	two	cartesian	axes212	(see	
Problem	29).	

Unit	vector			ŝ 	has	some	useful	properties,	best	derived	when	it	is	written	in	
terms	of	the	following	normal	vector 		

!s(!r ) :	

	
 		
ŝ(!r )=

!s(!r )
!s(!r )

, where !s(!r )= x
a2
x̂ + y

b2
ŷ + z

c2
ẑ. 	 (A7.9)	

Then,	if		 
!r 	is	the	position	vector	of	a	point	on	the	ellipsoidal	surface,	equation	A7.2	

is	equivalent	to	the	vector	equation		

	

 !!

r1 i
s(r1)= x1x̂ + y1 ŷ + z1ẑ( )i x1

a2
x̂ +

y1
b2
ŷ +

z1
c2
ẑ

⎛

⎝⎜
⎞

⎠⎟

=
x1
2

a2
+
y21
b2

+
z1
2

c2
=1 ∀r1 ∈S.

	 (A7.10)	

The	equation	of	the	plane	tangent	to	the	ellipsoidal	surface	at	point	 !!
r1 	is213	

	
 		
!r i
!s(!r1)=

x1
a2
x +

y1
b2
y +

z1
c2
z =1, 	 (A7.11)	

relationship	that	may	be	easily	checked	to	be	true	at	the	intersections	of	the	three	
principal	axes	with	the	ellipsoidal	surface.	

In	a	similar	fashion,	vectors	 !!
r1 	and	 !!

s(r1) 	determine	a	family	of	parallel	planes	
whose	equation	is	
	  		

!r i
!r1 × ŝ(

!r1)= k , 	 (A7.12)	

																																																								
	

211	 Korn	and	Korn,	p.	158	eq.	5.5-5.	
212	 Korn	and	Korn,	p.	46.	
213	 Kemmer,	p.	11	Problem	16	and	p.	196.	

 !!ŝ(
r )
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where	k	is	constant	for	each	plane	and	equal	to	its	distance	to	the	origin.	The	plane	
through	point	 !!

r1 	satisfies	the	equation	

	  		
!r1 i
!r1 ×
!s(!r1)=

!r1 ×
!r1 i
!s(!r1)=0, 	 (A7.13)	

expression	that	shows	that			 
!r1 ,
!s(!r1) 	and	the	center	O	of	the	ellipsoid	lie	on	the	

same	plane.	
In	what	follows	a	central	plane	of	the	ellipsoid	will	be	any	plane	that	contains	its	

center,	the	origin	its	principal	system	of	coordinates.	In	the	same	fashion,	a		central	
section	of	the	ellipsoid	will	be	any	intersection	of	the	surface	with	a	central	plane,	
as	illustrated	in	Figure	27.	

The	geometrical	meaning	of	vector	
 !!
s(r ) 	may	be	obtained	from	Figure	27.	It	
is	there	seen	that	the	distance	!

d j 	from	
the	ellipsoid’s	center	O	to	the	the	plane	
tangent	to	S	at	point	

 !
rj 	is	the	projection	

of	that	vector	on	the	direction	of	!!ŝ j . 	This	
value	is	here	called	the	central	distance		
corresponding	to	the	given	point	of	the	
ellipsoidal	surface.	The	dot	lines	in	the	
figure	correspond	to	the	intersections	of	
the	tangent	planes	and	the	plane	that	
determines	the	depicted	central	section.	

	
Figure	27.	Central	distance	and	chord	
in	an	ellipsoid’s	central	section.	

The	general	expression	for	the	central	distance	d	of	a	point	 !
r 	on	the	ellipsoidal	

surface	is	

	
 		
d(!r )= rcosθ = !r i ŝ(!r )=

!r i
!s(!r )
s(!r ) for !r ∈S. 	 (A7.14)	

Using	eqs.	A7.8	and	A7.10,	the	central	distance	turns	out	to	be	

	

 		

d(!r )= x2

a2
+ y

2

b2
+ z

2

c2
⎛

⎝⎜
⎞

⎠⎟
x2

a4
+ y

2

b4
+ z

2

c4
⎛

⎝⎜
⎞

⎠⎟

−1/2

= x2

a4
+ y

2

b4
+ z

2

c4
⎛

⎝⎜
⎞

⎠⎟

−1/2

= 1
s(!r)

= 1
x1
2

a4
+
y1
2

b4
+
z1
2

c4

= a2b2c2

b4c4x21 +a
4c4 y21 +a

4b4z21
,

	 (A7.15)	

Equation	A7.15	shows	that	the	norm	of	vector			 
!s(!r ) is	the	inverse	of	the	central	

distance	of	point	 !
r 	on	the	ellipsoidal	surface.	A	simple	verification	of	the	the	

formula	is	to	apply	it	to	the	sphere,	where	a	=	b	=	c	=	R	=	d.	

Eq.	A7.14	determines	the	angle	between	vector	 !!
r1 	of	a	point	P1	on	the	ellipsoidal	

surface	and	the	normal	to	it	at	that	point:	
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cosθ1 =

!r1 i ŝ(!r1)
r1

. 	 (A7.16)	

The	following	dyadic	is	one	of	the	components	of	the	external	depolarization	
tensor	eq.	4.66:		

	

 		

ŝ(!r |κ )ŝ(!r |κ )= x2

a2 +κ( )2
+ y2

b2 +κ( )2
+ z2

c2 +κ( )2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1 x̂α xα xβ x̂β
d2α +κ( ) d2β +κ( )α ,β

∑ ,

where α = x , y ,z , dx = a,dy = b,dz = c.
	 (A7.17)	

This	tensor	has	the	property	that	when	applied	to	a	vector	leaves	only	the	
component	normal	to	the	ellipsoidal	surface	eq.		A7.20	(see	also	section	Surface	
step	discontinuity,	in	particular	eq.	3.39).		

The	following	property	is	responsible	of	the	vanishing	trace	of	the	external	
depolarization	tensor	eq.	:	

	

 		

Tr ŝ(!r |κ )ŝ(!r |κ )= x2

a2 +κ( )2
+ y2

b2 +κ( )2
+ z2

c2 +κ( )2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1 x2α
d2α +κ( )2α

∑

= x2

a2 +κ( )2
+ y2

b2 +κ( )2
+ z2

c2 +κ( )2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1
x2

a2 +κ( )2
+ y2

b2 +κ( )2
+ z2

c2 +κ( )2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=1.

	 (A7.18)	

Summary	of	properties	

The	given	properties	of	normal	vector	 		
!s(!r ) are	collected	next.	

	

 		

!s(!r )= x
a2
x̂ + y

b2
ŷ + z

c2
ẑ : !s(!r )⊥ S at !r ;

!r i
!s(!r1)=

x1
a2
x +

y1
b2
y +

z1
c2
z =1 is	the	plane	tangent	to	S 	at	!r1;

!r1 i
!s(!r1)=

x1
2

a2
+
y21
b2

+
z1
2

c2
=1 ∀!r1 ∈S;

1
s(!r ) = d(

!r )= 1
x1
2

a4
+
y1
2

b4
+
z1
2

c4

= a2b2c2

b4c4x21 +a
4c4 y21 +a

4b4z21

is	the	distance	to	the	ellipsoid's	center	of	the	plane	tangent	at	!r ;
ŝŝ is	the	dyadic	that	projects	from	any	vector	the	component

normal	to	the	surface	S 	of	the	ellipsoid.

	 	(A7.19)	
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Confocal	ellipsoids	

	
Figure	28.	Central	section	of	two	confocal	ellipsoids.	

For	the	calculation	of	the	potential	outside	the	body	use	is	made	of	a	family	of	
ellipsoids	confocal	with	the	body’s	surface,	

	
 		
x2

a2 +κ
+ y2

b2 +κ
+ z2

c2 +κ
=1, where κ ≥0, !r ∉V . 	 (A7.20)	

Figure	28	shows	the	central	section	z	=	0	of	two	such	ellipsoids,	where	a	=	5,	b	=	10	
and	κ	=	20.	Notice	that	the	confocal	ellipse	is	always	rounder	than	the	original	one	
and	that	the	distance	between	surfaces	is	largest	for	the	smallest	semiaxes.	κ		is	
usually	determined	as	the	largest	or	positive	algebraic	root	of	eq.	A7.20,	where	 	

!r is	
any	field	point	outside	the	surface	of	the	ellipsoidal	body	eq.	A7.23.	To	the	author’s	
knowledge	no	explicit	expressions	have	been	given	for	these	roots,	which	in	
general	are	calculated	point	by	point214	by	methods	like	the	Newton-Raphson	
iterations215.		

Physical-geometric	interpretation	of	κ  

The	unit	of	the	confocal	parameter	κ		is	length2,	which	suggests	its	
interpretation	as	a	squared	distance.	This	assumption	is	confirmed	when	eq.	A7.20	
is	solved	for	the	only	type	of	spheroid	where	an	explicit	solution	may	be	easily	
found,	a	sphere	of	radius	R	(see	eq.	6.81).	In	this	case	

																																																								

	
214	 See,	for	instance,	at	Barczak	&	Breit	&	Jusiel,	Ellipsoids,	material	points	and	material	segments,	

comment	in	the	paragraph	preceding	eq.	70	in	an	un-numbered	page.	
215	 Korn	&	Korn,	section	20.2-1.	
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	 		κ = r2 −R2. 	 (A7.21)	

For	the	general	ellipsoid	eq.	A7.20,	upper	and	lower	bounds	for	κ	may	be	found.	
The	squared	distance	from	its	center	to	any	surface’s	point	satisfies	the	following	
inequality,	
	 		c

2 +κ ≤ r2 ≥a2 +κ , so	that r2 −a2 ≤κ ≤ r2 − c2. 	 (A7.22)	

If	 		
!r0 	is	a	point	on	the	body’s	surface,	its	coordinates	satisfy	the	equation	

	
		
x0
2

a2
+
y0
2

b2
+
z0
2

c2
=1, 	 (A7.23)		

its	confocal	ellipsoid	being	given	by	eq.	A7.20.	The	maximum	absolute	value	of	
each	variable	is	its	semiaxis,	when	the	two	other	variables	are	zero.	For	x,	for	
instance,	it	is	then	obtained	

	 		κ = x2 − x0
2 = a2 +κ( )−a2 , 	 (A7.24)	

and	a	similar	result	is	obtained	is	obtained	for	y	and	z	suggesting	that	the	value	of	
κ		may	be			r

2 − r20 .	The	conjecture	is	true	when	the	components	of	 		
!r 	and	!r0 	are	

taken	to	have	equal	angles	in	their	parametric	expressions	eqs.	A7.3:	

	

		

x0
2 = a2 ⋅cos2u0 ⋅sin2v0 , x2 = a2 +κ( )⋅cos2u0 ⋅sin2v0
y0
2 = b2 ⋅sin2u0 ⋅sin2v0 , y2 = b2 +κ( )⋅sin2u0 ⋅sin2v0 ,
z0
2 = c2 ⋅cos2v0 , z2 = c2 +κ( )⋅cos2v0.

	 (A7.25)	

A	pair	of	such	vectors	are	depicted	in	Figure	28,	showing	that	in	general	they	
are	not	colinear	with	the	elipsoid’s	center	(the	origin	of	coordinates).	
For	corresponding	points	

	

		

r2 − r0
2 = x2 − x0

2 + y2 − y0
2 + z2 − z0

2

= a2 +κ −a2( )cos2u0 ⋅sin2v0 +κ ⋅sin2u0 ⋅sin2v0 +κ ⋅cos2v0
=κ sin2v0 + cos2v0( ) =κ .

	 (A7.26)	

That	is,	

	  		
κ = r2 − r20 =

!r i
!r − !r0 i

!r0 , 	 (A7.27)	

Corresponding	points	

Any	two	points	satisfying	eqs.	A7.25	are	called	corresponding	points	of	the	
confocal	pair	of	ellipsoids.	A	similar	relationship	and	its	properties	are	valid	for	
any	two	pair	of	confocal	ellipsoids	κ,	κ’,	but	this	will	not	be	needed	here.		
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The	correspondance	of	points	 		
!r0 ,
!r 	may	also	be	expressed	as	

	
		

x0
a
= x

a2 +κ
, y0
b

= y

b2 +κ
, z0
c
= z

c2 +κ
, 	 (A7.28)	

as	follows	from	the	fact	that	the	angular	parts	of	each	pair	of	components	are	the	
same.	When	thus	expressed	the	correspondence	provides	a	simple	way	of	proving	
the	important	properties	that	follow.		

If	 		
!r0 ,
!
ρ0 	are	any	two	points	on	ellipsoid	A7.23	and	 		

!r , !ρ 	its	corresponding	points	
on	the	confocal	ellipsoid	eq.	A7.20,	then	

	  		
!r0 i
!
ρ = !r i

!
ρ0. 	 (A7.29)	

The	correspondence	between	the	components	ξ,	ψ,	ζ		of	vectors 	
!
ρ0 and

!
ρ 	(eqs.	

A7.28)	and	eq.	A7.27	give	

	

 		

ξ0
a
= ξ

a2 +κ
, ψ 0
b

= ψ

b2 +κ
, ζ0
c
= ζ

c2 +κ
,

where !ρ i
!
ρ −
!
ρ0 i
!
ρ0 =κ .

	 (A7.30)	

The	proof	easily	follows	from	the	expansion	of	the	scalar	product	and	the	
relationships	eqs.	A7.27,	A7.28	and	A7.30:	

	

 		

!r0 i
!
ρ = x0ζ + y0ψ + z0ζ = a2 +κ

a
x0ζ0 +

b2 +κ
b

y0ψ 0 +
c2 +κ
c

z0ζ0 ,

!r i
!
ρ0 = xξ0 + yψ 0 + zζ0 =

a2 +κ
a

x0ξ0 +
b2 +κ
b

y0ψ 0 +
c2 +κ
c

z0ζ0

= !r0 i
!
ρ.

	 (A7.31)	

A	corollary	of	eqs.	A7.27	and	A7.29	is		

	  		
!r −
!
ρ0 =

!
ρ − !r0 , 	 (A7.32)	

as	follows	from		

	

 		

!r −
!
ρ0( )i !r − !ρ0( )− !ρ − !r0( )i !ρ − !r0( )

= !r i
!r − !r i

!
ρ0 −
!
ρ0 i
!r +
!
ρ0 i
!
ρ0 −
!
ρ i
!
ρ +
!
ρ i
!r0 +
!r0 i
!
ρ − !r0 i

!r0
= !r i
!r − !r0 i

!r0 −
!
ρ i
!
ρ −
!
ρ0 i
!
ρ0( )+2 !r0 i

!
ρ − !r i

!
ρ0( )

=κ −κ +2⋅0=0.

	 (A7.33)	
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This	property	is	the	foundation	of	Ivory’s	method	for	the	calculation	of	the	
gravitational	potential	at	points	external	to	the	body216.	
	

	 	

																																																								

	
216	 MacMillan,	pp.	54-57.	
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Appendix	8:	
Useful	integrals	

		

ds

A+ s B + s( )2∫ 	

The	integrals	that	give	the	equatorial	eigenvalues	of	both	type	of	spheroids	are	
of	this	type.	In	order	to	solve	it	the	first	step	is	to	reduce	the	exponent	of	A+s	to	1	
using	the	formula217	

	
		

ds
X ⋅Y 2

= − X
A−B( )Y − 1

2 A−B( )
ds
X ⋅Y∫∫ , 	 (A8.1)	

where	 X	=	A	+	s,		Y	=	B	+	s.	 (A8.2)	

The	primitives	of	the	remaining	integral	are218	

	
		

ds
X ⋅Y∫ = 2

B − A
arctan X

B − A

⎛

⎝
⎜

⎞

⎠
⎟ if A<B , 	 (A8.3)	

	
		

ds
X ⋅Y∫ = 1

A−B
ln X − A−B

X + A−B

⎛

⎝
⎜

⎞

⎠
⎟ if A>B. 	 (A8.4)	

Therefore,	

	

		

ds
X ⋅Y 2∫ = X

B − A( )Y + 1
B − A( )3/2

arctan X
B − A

⎛

⎝
⎜

⎞

⎠
⎟ if A<B. 	 	(A8.5)	

																																																								

	
217	 Korn	&	Korn,	last	line	of	p.	938	and	eq.	154	of	p.	941.	
218	 Korn	&	Korn,	p.	941	eq.	149.	
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ds
X ⋅Y 2∫ = − X

A−B( )Y − 12
1

A−B( )3/2
ln X − A−B

X + A−B

⎛

⎝
⎜

⎞

⎠
⎟ if A>B ,

where X = A+ s ,Y = B + s.
	 (A8.6)	

		

ds

A+ s( )3/2 B + s( )∫ 	

This	integral,	also	found	for	spheroids,	may	be	reduced	to	the	previous	one	
when	integrating	by	parts.	Using	the	same	notation	eq.	A8.2,	

	

		

ds

A+ s( )3/2 B + s( )∫ = ds
X 3/2Y∫ . 	 (A8.7)	

Upon	integration	by	parts		

	

		

udv∫ =u⋅v − vdu∫ , where

u= 1
Y
, du= − ds

Y 2 , v = −2X −1/2 , dv = X −3/2 ,
	 (A8.8)	

it	is	obtained	

	
		
udv∫ = ds

X 3/2Y∫ = − 2
X ⋅Y

−2 ds
X ⋅Y 2∫ . 	 (A8.9)	

Therefore	

	
		

ds
X 3/2Y∫ = − 2

X ⋅Y
−2 ds

X ⋅Y 2∫ . 	 (A8.10)	

Upon	replacement	from	eqs.	A8.5	and	A8.6	it	is	obtained	

	

		

ds
X 3/2Y∫ = − 2

X ⋅Y
− 2 X
B − A( )Y − 2

B − A( )3/2
arctan X

B − A

⎛

⎝
⎜

⎞

⎠
⎟ if A<B , 	 (A8.11)	

	

		

ds
X 3/2Y∫ = 2

A−B( ) X
+ 1
A−B( )3/2

ln X − A−B
X + A−B

⎛

⎝
⎜

⎞

⎠
⎟ if A>B. 	 (A8.12)	
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Appendix	9:	
Legendre’s	elliptic	integrals	

Definitions	

!!F(φ ,k) 	and		!!E(φ ,k) 	are	Legendre's	incomplete	elliptic	integrals219	of	the	first	
and	second	kind,	respectively,	considered	to	be	a	generalization	of	the	well	known	
trigonometric	functions.	Though	not	often	mentioned	in	the	theory	of	
electromagnetism,	they	appear	in	common	problems	such	as	the	computation	of	
the	arc	length	of	an	ellipse	(from	which	they	got	their	name),	the	dependence	of	
the	period	of	a	pendulus	on	the	amplitude	of	oscillation220	and	the	surface	area	of	
an	ellipsoid	(see	eq.	A7.5).	

The	canonical	expressions	for	the	elliptic	integrals	are221:	

	

		

E(φ ,k)≡ 1−k2sin2t dt
0

φ

∫ ≡ 1− sin2α ⋅sin2t dt
0

φ

∫ =E(φ \α ),

F(φ ,k)≡ dt

1−k2sin2t0

φ

∫ ≡ dt

1− sin2α ⋅sin2t0

φ

∫ =F(φ \α )
	 (A9.1)	

φ		is	the	amplitude,	k	the	elliptic	modulus	and	 α		the	modular	angle	of	these	
integrals.	Their	values	can	be	found	in	double	entry	tables	like	those	of	
Abramowitz	and	Stegun	(pp.	613-618),	and	may	be	calculated	for	arbitrary	values	
of	their	two	arguments	by	mathematical	software	like	Mathematica™	and	Maple™.	

Notation	used	in	the	more	important	references	
Different	authors	use	different	conventions	for	the	arguments,	both	in	order	and	

meaning.	The	following	table	shows	the	relationship	between	the	notation	used	in	
this	book	and	that	of	the	authors	more	often	quoted	here.	Before	making	any	
calculations	the	reader	should	carefully	check	those	used	by	its	favourite	or	
available	author	or	software,	for	which	it	is	recommended	to	check	one	or	more	
values,	as	those	given	in	Problem	21.	

	
																																																								
	

219	 Complete	elliptic	integrals	have	φ	=	π/2.		
220	 See,	for	instance.	C.	E.	Solivérez,	Comportamiento	de	un	péndulo	real	sin	rozamiento.	
221	 Korn	&	Korn,	p.	833,	eqs.	21.6-29a;	p.	834,	eqs.	21.6-29c	and	21.6-29d.	Weisstein,	Eric	W;	

Elliptic	Integral	of	the	First	Kind;	MathWorld--A	Wolfram	Web	Resource.	Abramowitz	&	Stegun,	
pp.	589	eqs.	17.2.8	and	17.2.6.	
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Author	 Nx,	Ny,	
Nz	 β  γ 	 k	 E(φ ,k),	F(φ ,k)	 pp.	

Abramowitz	
&	Stegun	 ___222	 —	 —	 	sinα 	

E(ϕ\α),	F(ϕ\α);	
E(ϕ|m),	F(ϕ|m)223	

589-590	

Korn	&	Korn	 ___224	 —	 —	 	sinα
	

E(k,ϕ),	F(k,ϕ);	
E(ϕ\α),	F(ϕ\α)	 833-836	

MacMillan	 ___225	 β	 γ	 k	 E(ω,k),	F(ω,k)	 58-60	

Osborn	
L/4π,	
M/4π,	
N/4π	

cos	ϑ	 cos	ϕ	 	sinα 	 E(k,ϑ),	F(k,ϑ)	 351-352	

Stoner	 Da,	Db,	Dc	 β γ k	 E(k,φ),	F(k,φ)	 807-808	

Mathematica	 ___	 —	 —	 k	 EllipticE[ϕ,k2],	
EllipticF[ϕ,k2],	 	

Table	6.	Notation	used	by	several	authors.	

Although	all	arguments	are	here	real,	for	a	full	analysis	of	the	general	properties	
of	elliptic	integrals	they	should	be	taken	to	be	complex	numbers.	In	respect	to	their	
interest	in	this	book	—the	expressions	for	the	components	of	the	depolarization	
tensor	of	the	triaxial	ellipsoid,	eqs.	4.9	and	—	their	arguments	are	real,	bounded	
and	given	by	ratios	of	the	ellipsoid’s	semiaxes,	as	follows:	

	

		

0≤ sinφ = 1−γ 2 ≤1, 0≤ k = 1−β 2

1−γ 2 = sinα ≤1,

where β = b
a
,γ = c

a
.

	 (A9.2)	

Special	values	and	parametric	graphs	
Some	special	values	of	the	elliptic	functions	are	given	in	the	following	table	for	

its	use	in	the	calculation	of	depolarization	tensors.	In	the	case	of	the	constant	
interior	tensor	N,	the	values	of	the	arguments	are	connected	in	a	one	to	one	
relationship	with	those	of	β	and	γ,	as	given	in	the	expressión	of	the	auxiliary	
function	f		for	the	triaxial	ellipsoid	eq.	4.52.	These	values	are	also	shown	in	the	
table,	identifying	the	type	of	ellipsoid	they	characterize.	

	 	

																																																								

	
222	 Gives	general	properties	and	tables	of	values.	
223	 m	=	sin2	α.	
224	 Gives	general	properties	and	graphs.	
225	 Gives	only	the	expression	of	the	potential.	
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φ 	 k	 α 	 β  γ  Ellipsoid’s	type	 E(φ ,	k)	 F(φ ,	k)	

0	 k	 α	 1	 1	 sphere	 0226	 0227	

φ	 0	 0	 1	 γ	 oblate	spheroid	 φ228	 φ229	

φ	 1	 π/2	 β	 β	 prolate	spheroid	 sin	φ	
230	 	ln tan φ /2+π /4( )( ) 231	

π/2	 1	 π/2	 0	 0	 infinite	elliptic	
cylinder232	 1	 ∞	

π/2	 0	 0	 1233	 0	 infinite	sheet	of	
constant	thickness	 π/2 π/2234	

Table	7.	Special	values	of	the	incomplete	elliptic	functions	E(φ ,	k)	and	F(φ ,	k).	

Figure	29	and	Figure	30	show	parametric	graphs	of	E(φ\α)	and	F(φ\α).	In	both	
cases	the	left	side	graph	shows	the	dependence	on	α		for	φ		taken	as	a	parameter	
(there	written	ϕ).	The	right	side	shows	the	dependence	on	φ,	where	each	curve	
corresponds	to	a	diferent	value	of	parameter	α . 

	
Figure	29.	Parametric	graph	of	the	incomplete	elliptic	function	of	the	second	kind	E.235	

																																																								
	

226	 Eq.	A9.1.	
227	 Eq.	A9.1.	
228	 Abramowitz	&	Stegun,	eq.	17.4.23.	
229	 Abramowitz	&	Stegun,	eq.	17.4.19.	
230	 Abramowitz	&	Stegun,	eq.	17.4.25.	
231	 Abramowitz	&	Stegun,	eq.	17.4.21.	
232	 MacMillan,	p.	70.	
233	 See	the	comments	on	the	infinite	sheet	in	section	Infinite	semiaxes.	
234	 Abramowitz	&	Stegun,	Fig.	17.2.	
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Figure	30.	Parametric	graph	of	the	incomplete	elliptic	function	of	the	first	kind	F(φ\α).236	

As	seen	in	Figure	29,		E(φ\α)	is	never	negative.	Its	highest	value	in	the	intervals	
determined	by	eqs.	A9.2	is	E(π/2\0)=	π/2237.	Its	lowest	value	is	attained	at	the	
origin,	where	E(0\0)	=	0.	For	constant	φ,	E(φ\α)	is	a	decreasing	function	of	α	which	
is	almost	constant	for	the	lowest	values	of	φ.	For	constant	α	it	is	an	increasing	
function	of	φ,	linear	for	α	=	0	(the	line	E(φ\0)	=	φ	in	Table	7).	

As	seen	in	Figure	30,	F(φ\α)	is	never	negative	and	diverges	at	F(π/2\ π/2).	For	
fixed	α	it	is	almost	constant	for	low	values	φ	(ϕ	in	the	figure).	For	α	=	0,	is	linear	in	
φ	(the	line	E(φ\0)	=	φ	in	in	Table	7).	

Reduction	to	normal	form	of	the	elliptic	integrals	of	interest	
The	integrals	of	interest	for	the	calculation	of	the	depolarization	tensor	are238	

	 		
For	a≥b≥ c ,k = a2 −b2

a2 − c2
, sinφ = a2 − c2

a2 +κ
, x2

a2 +κ
+ y2

b2 +κ
+ z2

c2 +κ
=1, 	 (A9.3)	

																																																																																																																																																																		
	

235	 Abramowitz	&	Stegun,	p.	594,	figures	17.6	and	17.7.	
236	 Abramowitz	&	Stegun,	p.	594,	figures	17.3	and	17.4.	
237	 This	corresponds	to	the	complete	elliptic	integral	of	the	second	kind.	Its	graph	is	given	in	

Abramowitz	&	Stegun,	p.	592	Figure	17.2.	

238	 MacMillan,	pp.	58-60,	where	the	expression	for	function	dn	in	p.	60	should	be
		
dnvκ =

b2 +κ

a2 +κ
,   

 as	follows	from	its	definition	at	p	58,	and	E(ωκ)	is	E(ωκ	,k).	
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ds

a2 + s( ) b2 + s( ) c2 + s( )κ

∞

∫ = 2
a2 − c2

F(φ ,k), 	 (A9.4)	

	
		

ds

a2 + s( )3/2 b2 + s( ) c2 + s( )κ

∞

∫ = 2
a2 − c2 a2 −b2( ) −E(φ ,k)+F(φ ,k)⎡⎣ ⎤⎦ , 	 (A9.5)	

	

		

ds

b2 + s( )3/2 a2 + s( ) c2 + s( )κ

∞

∫ = − 2 c2 +κ

a2 +κ( ) b2 +κ( ) b2 − c2( )

+ 2 a2 − c2

a2 −b2( ) b2 − c2( )E(φ ,k)−
2

a2 − c2 a2 −b2( )F(φ ,k),
	 (A9.6)	

	

		

ds

c2 + s( )3/2 a2 + s( ) b2 + s( )κ

∞

∫

= 2 b2 +κ

a2 +κ( ) c2 +κ( ) b2 − c2( )
− 2

a2 − c2 b2 − c2( )E(φ ,k).
	 (A9.7)	
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Alphabetic	index	

	

A	

aspect	ratio:	63,	170	
auxiliary	function	f:	46	

B	

body	of	infinite	extension:	114	

C	

cavity:	116	
compass	

stability	of	the	needle’s	magnetization:	111	
conductor	

as	perfect	dielectric:	127	
discussion:	30	
surface	charge	density:	52	

constitutive	equation	
electric	case:	18	
magnetic	case:	27	

D	

demagnetization	coefficient:	see	depolarization	
tensor	

demagnetization	factor:	see	depolarization	tensor	
demagnetization	tensor:	see	depolarization	tensor	
demagnetizing	coefficient:	see	depolarization	

tensor	
demagnetizing	factor:	see	depolarization	tensor	
depolarization:	63,	67	
depolarization	factors:	see	depolarization	tensor	
depolarization	tensor	

body’s	surface	value:	53	
cylinder,	circular:	56	
cylinder,	elliptic:	68,	93	
definition:	46	
eigenvalue	Na:	80,	81	
eigenvalue	Nb:	80,	82	
eigenvalue	Nc:	80	
eigenvalues,	graphs:	79	
eigenvalues,	integral	expressions:	67,	179	
eigenvalues,	order:	84	
expressions	from	which	is	derived:	46	
external	value:	47,	85	
history:	1	
infinite	semiaxes:	60	
internal	value:	47	
method,	applications:	3,	4	

method,	limitations:	2,	5,	103	
microscopic	origin:	24,	143	
N	for	similar	ellipsoids:	63	
N’s	inverse:	60	
N’s,	values:	3	
oblate	spheroid:	69,	95	
obtention	from	potentials:	46	
principal	coordinates	system:	60	
prolate	spheroid:	74,	96	
representation	in	arbitrary	cartesian	

coordinates:	49	
sheet:	54	
sheet	of	infinite	extension:	62	
sphere:	50,	58,	133,	136,	142	
surface	step	discontinuity:	51	
symmetric	tensor:	47	
symmetries	of	N:	50	
trace:	48	
triaxial	ellipsoid:	65,	97,	135	

dielectric:	24	
free	energy:	106	

dielectric	constant:	122	
Dirac's	delta	function:	8	
Dirichlet,	gravitational	potential	of	an	ellipsoidal	

body:	66	
dyadic	

definition	and	properties:	167	
notation:	10	

E	

Earnshaw's	theorem:	30	
electric	dipole	moment	

conductors:	33	
induced:	25	

electric	displacement	vector:	18	
electric	field	

as	a	surface	integral:	31	
as	a	volume	integral:	16	
at	sharp	tips:	129	
conductors:	32	
general	polarization	case:	17	
induced	polarization:	20,	25	
integro-differential	equation	for	conductors:	31	
integro-differential	equation	for	dielectrics:	25	
on	conductors'	surface:	31	
permanent	polarization:	19	
point	dipole	_:	161	

electric	permeability:	25	
electric	polarization	

equivalent	_	for	conductors:	33	
induced:	20	
permanent:	19	

electric	potential	
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polarization	surface	density:	18	
polarization	volume	density:	15,	16	

electric	susceptibility	
apparent	anisotropy:	121	
definition:	25	

electromagnetic	units:	147	
electrostriction:	101	
ellipsoid	

normal	vector:	139	
ellipsoid	

aspect	ratios	and	type	of	ellipsoid:	64	
central	distance:	172	
central	plane:	172	
central	section:	172	
confocal	ellipsoids:	174	
corresponding	points:	175	
cylinder,	circular:	54	
cylinder,	elliptic:	65	
normal	unit	vector:	171,	173	
oblate	spheroid:	65	
principal	coordinate	system:	169	
prolate	spheroid:	65	
semiaxes	order:	64	
sheet:	54	
similar	ones:	62	
sphere:	54	
surface	area:	170	
tangent	plane:	171	
triaxial	ellipsoid:	65	
volume:	170	

elliptic	integrals:	170,	181	
notation:	181	

energy	
crystalline	anisotropy:	105	
potential	_	of	an	ellipsoidal	body:	66	

equivalent	polarization:	see	electric	and	magnetic	
polarization	

F	

field	point:	6,	11,	45	
example:	21	

force	
electric	case:	114	
magnetic	case:	114	

G	

Gauss-Ostrogradsky’s	integral	theorem:	155	
Gibbs	free	energy:	103	

H	

Helmholtz	free	energy	
definition:	101	
linear	case:	102	

homoeoid	
definition:	117	
spherical	_:	137	

I	

induced	electric	polarization	

atomic	case:	21	
discussion:	20	

infinite	right	circular	cylinder	
magnetized:	125	

integral	theorems	
curl	theorem:	155,	158	
divergence	theorem:	155,	156,	158	
gradient	theorem:	155	
singularities:	5	

irreversible	processes:	100	
Ivory's	method:	85	

J	

jump	discontinuity:	see	singularity	

K	

Kronecker's	delta:	11	

L	

laplacian	of	a	point	charge	potential’s:	153	
lattice	sums:	4,	22	
local	field:	24,	116	

M	

macroscopic	field:	6	
magnetic	

polarization	
induced:	30	

magnetic	dipole	moment	
induced:	30	
permanent:	29	
superconductor:	35	
surface	current:	132	
torque:	111	

magnetic	disk:	145	
magnetic	field	

as	a	volume	integral:	27	
general	magnetization	case:	27	
induced	magnetization	case:	30	
integro-differential	equation	for	induced	

magnetization:	30	
magnetic	induction	

constitutive	equation:	27	
integro-differential	equation	for	the	

superconducting	case:	37	
magnetization	model:	36	

magnetic	polarization	
discussion:	26	
equivalent	_	for	superconductors:	35	
induced:	29	
permanent:	28,	29	

magnetic	scalar	potential:	27	
magnetic	susceptibility	

definition:	29	
magnetic	vector	potential	

magnetization:	28	
magnetization	current:	28	

magnetization:	see	magnetic	polarization	
magnetostriction:	101	
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mathematical	notation:	10	
matrix:	see	matrix	representation	
matrix	representation:	10	
Meissner	effect:	34	
microscopic	field:	6	

P	

piezoelectricity:	101	
piezomagnetism:	101	
point	charge:	see	singularity	
polarizability	tensor	

atomic:	23	
body's	_:	20,	114	
conducting	body:	32,	33	
dielectric	body:	26	
magnetic	body:	30	
superconducting	body:	35,	133	

principal	coordinate	system	
definition:	11	

R	

references:	187	

S	

shell:	see	homoeoid	
singularity	

integrable:	15,	48	
integral	theorems:	156	
jump	discontinuity:	6	
point	charge:	6,	7	
step	discontinuity:	9,	157	

source	point:	6,	11	
example:	21	

sources:	see	references	
sphere	

conductor:	127,	128	
dielectric:	122	
ferromagnetic:	126	

superconductor:	130	
state	function:	99	
state	variables:	99	
step	discontinuity:	see	singularity	
superconductivity:	34	

as	perfect	diamagnetism:	131	
superconductor	

magnetization	model:	35	
surface	conduction	current	model:	36	

surface	charge	density	
conductor:	31	
polarized	dielectrics:	18	

surface	current	
superconductor:	36	

susceptibility	tensor	
crystal	symmetries:	165	

T	

textured	policrystals:	5	
thermodynamic	potential:	99	
thermodynamics:	99	
thermodynamics	of	electromagnetism:	101	
torque	

anisotropic	dielectric:	109	
dielectric	triaxial	ellipsoid:	108	
magnetized	disk:	145	
spheroid:	144	

V	

vector	
notation:	10	
uniform:	6	
unit:	10	

vectorial	operators	
notation:	11	
properties:	151	

volume	
magnitude:	10	
region:	10	
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