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ABSTRACT 

When confininig oneself to the two-dimensional case it is 
possible to give simple geometric interpretations to the properties of 
alternative orthonormalization schemes. The symmetry, proximity and 
localization properties of the symmetric orthonormalization, and the 
delocalization property of the canonical scheme, among others, become 
thus evident at first sight. 
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RESUMEN 

Al restringirse al caso bidimensional es posible dar interpreta- 
ciones geométricas sencillas de los diferentes esquemas de ortonor-
malización utilizadas en física y química. Las propiedades de simetría, 
proximidad y localización de la ortonormalización simétrica, y la de 
delocalización del esquema canónico, entre otras, resultan entonces 
evidentes a primera vista. 

1. INTRODUCTION 

Orthonormal bases are customarily used when solving 
physical and chemical problemas, because then the 
mathematical formulation usually becomes simpler. There 
are, nevertheless, situations where the natural bases are 
nonorthonormal. That is, for instance, the case of the basis 
vectors of crystallography, or the atomic orbitals used in 
molecular and solid-state calculations. This is so in the last 
case because different orbitals, although orthogonal when 
belonging to the same atom, have nonvanishing overlap when 
centered on different atoms. 

As textbooks on mathematics discuss solely the Gram-
Schmidt procedure1 one may get the impression that this is 
the only known orthonormalization scheme. There are, in 
fact, infinitely may such schemes, the Gram-Schimdt one 
being probably the most cumbersome of all. 

While the properties of all alternative orthonormaliza- 
tion schemes are long since well known2, the necessity of 
working in a many-dimensional vectorial space precludes an 
easy visualization of the mathematical results. If one starts by 
considering the two-dimensional case the orthonormalization 
problem becomes instead a simple geometrical problem on 
the plane which may be solved almost by inspection. It is then 
easy to obtain a good grasp of the many important 
differences between the available procedures. As the two-
dimensional case has an interest of its own (remember 
molecular orbitals) and the better understanding thus 
obtained is valuable for the general many-dimensional case, a 
detailed discussion is well warranted. 
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2. ORTHONORMALIZATION ON THE PLANE 

Let ϕ1 and ϕ2 be two real, nonorthogonal, linearly 
independent and normalized wavefunctions: 

<ϕ1|ϕ1> = <ϕ2|ϕ2> = 1,  
(1) 

<ϕ1|ϕ2> = <ϕ2|ϕ1> = S, 

where S is the overlap. If we take them to be vectors on the 
plane we may write, instead, the scalar product as 

   < φ j |φk >  = gjk =

φ j i

φk , (2) 

gjk being an element of the symmetric metric matrix 

   
g = 1 S

S 1
⎛

⎝⎜
⎞

⎠⎟
. (3) 

Linear independence implies that   

φ1  and   


φ2  are not parallel, 

that is (see Fig. 1) 

   −1 < S =

φ

1
i

φ

2
= cosγ <1, 

(4) 

   
Det g = 1 S

S 1
=1− S2 ≠ 0, 

thus showing g to be a nonsingular matrix with an inverse. 
Our problem is finding a real transformation matrix O 

such that the new vectors 

   


φ '

j = Olj
l
∑


φl  (5) 

are orthonormal. That is 

    

φ '

j i

φ '

k = δ jk , Ot i g i O =1, (6) 

where δ jk is Kronecker's delta, Ot the transpose of O and 1 the 
unit matrix. 
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Fig. 1. Two unit vectors   


φ1  and   


φ2  are linearly independent if the angle γ 

between them is different from 0, π. A vector   

φ '

2  normal to   

φ1  

may then be obtained by the Gram-Schmidt procedure Eq. (8). 
The dashed line Σ is a mirror line. 

 
 
The general solution of the second Eq. (6) is 

   O = g
−1

2 iU, Ut = U−1, (7) 

where U is an arbitrary orthogonal matrix. In the general case 
of complex vectors the hermitian adjoint should be taken 
instead of the transpose, and U should be taken to be unitary. 

The best known orthonormalization method is the 
Gram-Schmidt process1 where, starting with a given vector   


φ1 , 

a normal vector   

φ '

2 is obtained from 
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φ

2
' =


φ

2
− cosγ


φ

1( )

φ

2
− cosγ


φ

1

. (8) 

It is clear that the Gram-Schmidt method gives the leading 
role to the initial vector, thus destroying the symmetry 
properties of the primitive set. Assume, for instance, that   


φ1  

and   

φ2 are related by the mirror line Σ in Fig. 1, 

  Σ i

φ1 =


φ2, Σ i


φ2 =


φ1, (9) 

where Σ  is the diadic performing the reflection. It is immedia- 
tely seen that the reflection symmetry is not preserved for the 
new basis, this being a consequence of the unequal weight 
given to each primitive vector in the construction of the 
respective new one, as measured by the projection 

   

φ j i

φ '

j . 

An alternative procedure comes to mind at once where 
the new orthogonal vectors are symmetrically rotated respect 
to the old ones, as shown in Fig. 2. It may be seen that the 
reflection symmetry is now preserved for the new vectors. As 
a matter of fact all unitary relationships between basis vectors 
are preserved in this orthonormalization process3 which 
corresponds to Löwdin's symmetric orthonormalization 

  O = g
−1

2. (10) 

We will now find   g
−1

2. It should first be noticed that any 
square root of g (there are four of them, but only one is 
appropiate) must verify the equation 

    
g

1
2 i g

1
2 = g, where g

1
2= p q

q p
⎛

⎝
⎜

⎞

⎠
⎟ .  (11) 

From here we obtain 

p2 + q2 = 1,    2pq = cosγ , 
(12) 

p = cosα,         q = sinα , 
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Fig. 2. The symmetric orthonormalization process generates new vectors 

  

φ '

1 ,   

φ '

2  which are symmetrically rotated respect to the original 
ones, thus preserving orthogonal relationships such as the 
mirror line Σ. 

 
 
 

sin2α = cosγ. (13) 

Because γ ≠ 0, π it is easily seen from Fig. 3 that Eq. (13) 
always has four different solutions in the interval (-π ;π ), as 
given by 

  
α = π

4 + γ
2 +nπ, (14) 

where the choice of the integer n depends on γ. 

The inverse matrix   g
−1

2  may now be written 
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g
−1

2 =

cosα
cos2α

−sinα
cos2α

−sinα
cos2α

cosα
cos2α

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

. (15) 

 
Fig. 3. For any given value of γ in (0; π ) (γ  ≠ 0, π) there are always four 

differente solutions to the equation sin2α = cosγ  which 
determines g-½, here indicated by circles. 

The four different values of α correspond to the four different 
combinations of signs of the eigenvalues of g-½ which are 
obtained from the secular equation 

 

cosα
cos2α

− λ
⎛
⎝⎜

⎞
⎠⎟

2

− sinα
cos2α

⎛
⎝⎜

⎞
⎠⎟

2

= 0, (16) 

namely 

  
λ ± = cosα  sinα

cos2α
=

sin α ± π
4

⎛
⎝⎜

⎞
⎠⎟

2cos2α
, (17)  
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eigenvalues which are plotted in Fig. 4. Replacing (10) and 
(15) into (5) we obtain 

  


φ

1
' = cosα

cos2α

φ

1
− sinα

cos2α

φ

2
,  

(18) 

  


φ

2
' = − sinα

cos2α

φ

1
+ cosα

cos2α

φ

2
. 

 
Fig. 4. Eigenvalues  of λ± of g-½ as a function of α. A comparison with 

Fig. 3 shows the branch -π/4 ≤ α ≤ π /4 to be the only one which 
makes g-½ positive definite. 

The new vectors are easily verified to be orthonormal-
ized and to correspond to a rotation in α of the primitive 
vectors, as may be seen from 

  


φ

1
i

φ '

1
=

φ

2
i

φ '

2
= cosα − sinα ⋅cosγ

cos2α
= cosα, (19) 

where use has been made of Eq. (13). We may see from Fig. 4 
that both 
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eigenvalues are positive when 

 
− π

4 ≤ α ≤ π
4 , α = π

4 − γ
2,  (20) 

this being the only branch in Fig. 3 which makes g-½ positive 
definite4. This solution, depicted in Fig. 2, has the unique 
property of giving orthonormalized vectors which are the 
closest to the old ones in the sense that 

  Δ
2 =


φ1

' −

φ1

2
+

φ2

' −

φ2

2
 (21) 

is a minimum. This property, which holds for the general 
many-dimensional case5, may be easily proved here. To that 
end consider, as in Fig. 5, an arbitrary pair of orthonormal 
vectors where 

   

φ j

' −

φ j = 2sin α j /2( ) , γ = α1 +α2 +

π
2 . (22) 

 
Fig. 5. For a general orthonormalized pair   


φ '

1 ,   

φ '

2 the angles α1 and α2. 
will be different. The case is here illustrated where γ > π/2 for 
which it is proved in the text that Δ2 Eq. (21) is a minimum when 

 α1 = α2 . 

 
Therefore 
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Δ /2( )2 = sin2 α
1
/2( ) + sin2 α

2
/2( )

= sin2 α
1
/2( ) + sin2 γ − α

1
− π /2⎡⎣ ⎤⎦/2( )

=1− 1
2

cosα
1
− 1

2
cos γ − α

1
− π /2( ),

 (23) 

which is easily verified to be a minimum if 

 α1 = −π /4 + γ /2 = α2 . (24) 

A similar proof holds if γ > π/2 showing that it should be 

 α1 = α2 . The other three solutions for α yield orthonormal-
ized vectors which do not have the proximity property and are 
related to   


φ '

1  and   

φ '

2 Eq. (20) by 

  


φ ''

1 = −

φ '

1,

φ ''

2 = −

φ '

2,
φ '''

1 =

φ '

2,

φ2

''' =

φ '

1,
φ ''''

1 = −

φ '

2,

φ ''''

2 = −

φ '

1.
 (25) 

In Fig. 6 a plot is given of the values of the coefficients 
in Eq. (18) corresponding to the positive-definite branch 
Eq. (20). They are seen to blow-up in the linearly dependent 
case S = cosγ = ±1. The reason for this behaviour may be 
understood in the following fashion. Let us first define 

  

φ ± = 1

2

φ1 ±


φ2( ), (26) 

from which it follows that 

  


φ

1
' =


φ +

2cos γ /2( )
+


φ −

2sin γ /2( )
,


φ

2
' =


φ +

2cos γ /2( )
−


φ −

2sin γ /2( )
,
 (27) 

This is the linear combination of the normal vectors  

φ + ,  


φ −  

which gives the symmetrically orthonormalized vectors shown 
in Fig. 7. When   


φ2  approaches   −


φ1  (that is, cosγ = S 

approaches -1),  

φ +  
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becomes smaller, thus requiring a larger coefficient in order 
to make 

   

φ j

'  turn further away from 
  

φ j . In the limit   


φ2 = −


φ1  an 

infinitely large coefficient would be required. A similar 
analysis holds for the limit in which   


φ2  becomes parallel to   


φ1 . 

From a mathematical point of view the divergence appears 
because one of the eigenvalues of g vanishes, causing a 
divergence of one eigenvalue of g-½. 
 

 
Fig. 6. Coefficients of the symmetrically orthonormalized vectors 

Eq. (18) as functions of the overlap S = cosγ . The coefficients 
diverge for the linearly dependent case S = 1. 

As  

φ +  and  


φ −  are always orthogonal, one may wonder 

to which particular transformation O in Eq. 7 they correspond. 
To that end we will first consider the matrix S which 
diagonalizes g-½. It may be easily verified that 

   
St i g−1

2 i S = λ + 0
0 λ−

⎛

⎝
⎜

⎞

⎠
⎟ , (28) 
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Fig. 7. Forming an appropriate linear combination of  


φ +  and  


φ −  in order 

to obtain a symmetrically orthonormalized pair   

φ1

' ,   

φ2

' , requires 
giving more and more weight to  


φ +  as   


φ2  becomes antiparallel 

to   

φ1 . 

 

where 

  
S = 1

2
1 −1
1 1

⎛

⎝⎜
⎞

⎠⎟
 (29) 

and the eigenvalues λ± are given by Eq. (17). It should be 
noticed that -S is also an admissible solution, but we need 
not consider it separately. Choosing U = S in Eq. (7) 

   O = g
−1

2 i S,  (30) 
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from Eq. (5) we obtain 

  

φ '

1 = 2λ +

φ +, 

φ '
2 = − 2λ−


φ −,  (31) 

which correspond to Löwdin's canonical orthonormalization2. 
Its outstanding peculiarity is that it gives equal weight to both 
primitive vectors in the construction of each of the new ones, 
that is 

  


φ1 i

φ '

1 =

φ2 i

φ '

1 = λ +

2
,


φ1 i

φ '

2 =

φ2 i

φ '

2 = λ−

2
.
 (32) 

Due to its consequences for the localization, this 
property should be compared with that of the symmetric 
orthonormalization: 

  

φ1 i

φ '

1 =

φ2 i

φ '

2,

φ1 i

φ '

2 =

φ2 i

φ '

1. (33) 

When   

φ1  and   


φ2 are atomic orbitals centered on dif-

ferent sites, the property Eq. (33) implies that the symmetric 
orthonormalization is the one which incorporates into each 
new orbital 

   

φ j

'  the maximun amount of 
  

φ j  that is compatible 

with the preservation of the point symmetries, this being a 
feature of great importance in molecular and crystalline 
calculations. One thus obtains the most localized symmetry 
preserving orthonormal basis. On the other hand, the canon-
ical orthonormalization, by giving equal weight to both 
primitive vectors in the construction of each of the new ones, 
is the most delocalized of all possible orthonormal basis. 
These features are illustrated in Figs. 8 and 9 for two hydro-
gen 1s orbitals centered 2a0 apart, where a0 is the Bohr radius 
and S = 0.586453. For the sake of completeness we give in 
Fig. 10 the overlap S and the angles γ and α corresponding to 
different separations R of the aforementioned orbitals, where 
S has been calculated using the standard formulas6. 
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Fig. 8. Contours of the symmetrically orthonormalized orbitals corres-

ponding to two hydrogen 1s orbitals whose nuclei (black dots) 
are 2a0 apart. The amplitude values are given in units of a0-3/2. 
The localization is the largest one compatible with the preser-
vation of the reflection symmetry. 

 

 

 

Fig. 9. Canonical orthonormalization of two hydrogen 1s orbitals 2a0 
apart. All contours are equally spaced except the inner ones of 
the small lobes. Orbitals are as delocalized as is possible. 
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Fig. 10. Overlap S = cosγ  and angles γ  and α =π/4 - γ /2 (symmetric or-
thonormalization) for two hydrogen 1s orbitals as a function of 
the distance R between centers. R is given in Ångstroms and the 
angles in radians. 

3. CONCLUSIONS 

When restricting oneself to the plane, it becomes easy 
to give simple geometric interpretations of the properties of 
the Gram-Schmidt, the symmetric and the canonical ortho-
normalization schemes. Taking the primitive nonorthogonal 
vectors to be of unit length, the quantum-mechanical overlap 
S is then the cosine of the angle between vectors. 

It is thus shown that the only method which preserves 
orthogonal relationships between vectors (as illustrated by a 
mirror line) is the symmetric one. This solution is also the one 
that minimizes the "distance" between the old and the new 
vectors given by Eq. (21). It is also clearly seen why some 
coefficientes in the expansion of the latter in terms of the 
former blow up when approaching the limits S = ±1. This puts 
into sharper light the numerical problem of orthogonalizing 
quasi-linearly-dependent vectors. 

The canonical orthonormalization turns out to be the 
one such that each new vector contains equal amounts of the 
old ones, as measured by the projection of the latter into the 
former. This corresponds to the  
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maximum delocalization property of canonically orthonormal-
ized orbitals, as opposed to the maximum localization of the 
symmetrically orthonormalized ones. 

These easily grasped geometrical properties may be 
generalized to the n-dimensional case, thus providing a 
better understanding of the otherwise abstract orthonormal-
ization problem. 
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