El desafío es hacer la transferencia de los discos en el menor número de pases, que para ''n'' discos es 2<sup>''n''</sup>-1.
==Historia==
El problema apareció en el tomo 3 del libro ''Récréations mathématiques'', publicado en 1892 después de la muerte de Lucas. Con el título ''Les brahmes tombent''(Los brahamanes colapsan), se atribuye allí la descripción del problema a un personaje ficticio, N. Claus de Siam (anagrama de Lucas d'Amiens, ya que Amiens era la ciudad natal de Lucas), profesor del colegio Li-Sou-Stian (anagrama del liceo Saint Louis donde Lucas era profesor). El texto expresa:
:''Durante los viajes hechos para la publicación de los escritos del ilustre Fer-Fer-Tam-Tam, N. Claus de Siam vio en el gran templo de Benarés, debajo de una cúpula que marca el centro del mundo, tres varillas de diamante embutidas en una base de bronce, de la altura de 1 codo '' [unos 45 cm] '' y el grosor del cuerpo de una abeja. Sobre una de las varillas Dios ensartó, en el comienzo de los tiempos, 64 discos de oro puro; el mayor de todos apoyado sobre el bronce y los demás, cada vez más pequeños, apilados hasta el final de la varilla. Es la torre sagrada de Brahma. Día y noche los sacerdotes se turnan sobre las gradas del altar para trasladar la torre de la primera varilla a la tercera, respetando las antes señaladas reglas impuestas por Brahma. Cuando se complete la tarea la torre y los brahmanes caerán colapsarán y acaecerá el fin del mundo.
Benarés era el nombre dado por los europeos a la actual ciudad india de [https://es.wikipedia.org/wiki/Benarés Varanasi], situada sobre la margen del río Ganges. Allí está el templo de Kashi Vishwanath, supuestamente creado por el dios Brahma para celebrar al dios Shiva, pero no hay allí varillas de diamante ni discos de oro, aunque el oro y la plata abundan en su decoración.
La cantidad de pases necesarios para transferir los 64 discos citados a la tercer varilla es 18.446.744.073.709.551.615. Suponiendo que se haga un pase cada segundo, sin ninguna equivaciónequivocación, y que la tarea se haga sin parar todos los días del año, se requerirían unos 585.000 millones de años para completarla, 127 veces la edad del sol.
==Resolución==
===Algorítmica===
[[Archivo:Torre de Brahma triangular con paridad.jpg|320px|right|thumb|<small><center>'''Torre de Brahma con arreglo triangular<br>e identificación de paridad.'''</center></small>]]
Un algoritmo es una técnica de resolución de un problema matemático mediante una sucesión bien especificada de operaciones. Aunque todo algoritmo tiene una justificación matemática, no es necesario conocerla para aplicar el algoritmoaplicarlo. Tal es el caso, por ejemplo, de los algoritmos de multiplicación y división de números decimales, que funcionan bien aunque no recordemos sepamos su explicaciónjustificación.
La torre de Brahma se resuelve mediante un algoritmo muy simple que consta de sólo tres reglas. Para aplicarlo conviene distribuir las varillas o puntos de apoyo de los discos en forma de triángulo equilátero y diferenciar los discos de modo alternado, sea con colores o con alguna marca. Si se numeran los discos de menor a mayor a menor, donde 1 es el menor de todos, 2 el que le sigue en orden creciente de tamaño y así sucesivamente, los discos identificados por números pares deben poder diferenciarse marcarse para diferenciarlos fácilmente de los impares. Hecho ésto, el algoritmo de resolución, siempre respetando la regla del tamaño (no puede colocarse un disco sobre otro de menor diámetro) es el siguiente:
# Hay que mover siempre el disco 1 a la posición contigua en el sentido de rotación de las agujas del reloj (sentido horario, mirando desde arriba) y alternándolo con otro disco par o impar una de cada dos vueltas.
# El siguiente movimiento de otro disco diferente al más pequeño debe hacerse en la posición contigua del sentido horario si es impar y antihorario si es par.# Si no puede colocarse un disco en la posición contigua sin violar la regla del tamaño, se usa la posición siguiente, siempre respetando el sentido de rotación que le correspondepor su paridad.
Se Alternativamente, se puede elegir para el disco 1 el sentido de rotación antihorario sin perder la efectividad del algoritmo. Si se respetan rigurosamente las reglas, el algoritmo asegura está asegurada la resolución de la Torre de Brahma con el número mínimo de movimientos, lo que debe verificarse contándolos y viendo si coincide con la fórmula 2<sup>''n''</sup>-1.
===Matemática===
La Torre de Brahma puede resolverse usando [http://es.wikipedia.org/wiki/Relación_de_recurrencia relaciones de recurrencia], un método importante en muchas ramas de la Matemática, en especial para la construcción de secuencias y el cálculo de series de números. La base de este método es que el traslado a otra varilla de cualquier número de discos puede descomponerse en una serie de traslados de números decrecientes de ellosdiscos. El caso más simple que conviene resolver para ello es reducir el traslado de 4 discos al de 3 (véase la animación al tope de la página).
También El juego también puede resolverse mediante la [http://es.wikipedia.org/wiki/Teor%C3%ADa_de_grafos Teoría de Grafos] (véase el artículo de Wikipedia en inglés)o usando notación binaria. Aunque el tema no se discutirá aquí por requerir saberes matemáticos especializados, es importante señalar que la [[estructura]] del método de resolución es isomorfa (véase el artículo [[Origen :Archivo:Uso_de_metáforas_en_la_enseñanza.pdf|''Uso de metáforas en la Matemáticaenseñanza'']] ) con la de resolución de problemas aparentemente muy diferentes de otros juegos y de la computación (véase Gardner).
==Construcción de una Torre de Brahma==
El método más simple es cortar discos de un material grueso como goma EVA o cartón y usar una base triangular de papel con circunferencias guía para la colocación de las 3 pilas. El mas caro y estético es hacer discos, base y varillas de madera, haciendo los discos de dos maderas nobles diferentes, una clara y otra oscura.