Diferencia entre revisiones de «Poliedros arquimedeanos»

La enciclopedia de ciencias y tecnologías en Argentina

(enlace a valores de D)
 
(No se muestran 22 ediciones intermedias del mismo usuario)
Línea 1: Línea 1:
[[Archivo:Rombicuboctaedro de esquineros.jpg|300px|right|thumb|<small><center>'''Pantalla de lámpara con estructura de<br> rombicuboctaedro hecha con "esquineros".'''</center></small>]]
+
Los '''poliedros arquimedeanos''' '''sólidos arquimedeanos''' son [http://es.wikipedia.org/wiki/Poliedro_convexo poliedros convexos] cuyas caras son [http://es.wikipedia.org/wiki/Pol%C3%ADgono_regular  polígonos regulares] de 2 o 3 clases diferentes, cuyas [http://es.wikipedia.org/wiki/Arista_(geometr%C3%ADa) aristas] son todas de igual longitud y todos sus  [http://es.wikipedia.org/wiki/Vértice_(geometr%C3%ADa) vértices] son puntos de la esfera que los circunscribe. Los ángulos poliedros que determinan las aristas en cada vértice son todos [http://es.wikipedia.org/wiki/Congruencia_(geometr%C3%ADa) congruentes]. Aunque tienen variadas aplicaciones, estos cuerpos son de interés más por su bella e intrigante forma y sus ricas propiedades geométricas que por su utilidad práctica.
Los '''poliedros arquimedianos''' son [http://es.wikipedia.org/wiki/Poliedro_convexo poliedros convexos] cuyas caras son [http://es.wikipedia.org/wiki/Pol%C3%ADgono_regular  polígonos regulares] (no todas idénticas, ya que se excluyen los 5 [http://es.wikipedia.org/wiki/Sólido_platónico sólidos platónicos]), cuyas [http://es.wikipedia.org/wiki/Arista_(geometr%C3%ADa) aristas] son todas de igual longitud y las configuraciones de cuyos [http://es.wikipedia.org/wiki/Vértice_(geometr%C3%ADa) vértices] (forma de encuentro de las caras) son [http://es.wikipedia.org/wiki/Congruencia_(geometr%C3%ADa) congruentes] (pueden superponerse mediante adecuadas traslaciones, rotaciones o/y reflexiones). Todos los vértices de un ''poliedro arquimediano'' son puntos de una única superficie esférica, en la cual está inscripto.
 
  
Los poliedros arquimedianos son 15, donde 2 de ellos son enantiomorfos (imágenes especulares) de otros 2. El número que satisface la definición inicial es en realidad infinito porque incluye todos los [http://es.wikipedia.org/wiki/Prisma_(geometr%C3%ADa) prismas] y [http://es.wikipedia.org/wiki/Antiprisma  antiprismas] rectangulares cuyas bases son cualquiera de los infinitos polígonos regulares, exceptuando al prisma cuadrado que coincide con el cubo. Por esta razón es usual, aunque no hay consenso generalizado al respecto, excluir a los prismas y antiprismas de la lista de ''poliedros arquimedianos''. Salvo el icosaedro truncado y el rombicosidodecaedro &mdash;que tienen aplicaciones como cúpulas geodésicas,  pelotas de fútbol y [http://es.wikipedia.org/wiki/Fullereno fullerenos]&mdash; estos cuerpos son de interés más por su bella e intrigante forma y sus ricas propiedades geométricas que por su utilidad práctica.
 
  
Los poliedros arquimedianos son semirregulares y sus caras pueden ser de 2 o 3 tipos de los siguientes polígonos regulares: [http://es.wikipedia.org/wiki/Triángulo_equilátero triángulos equiláteros], [http://es.wikipedia.org/wiki/Cuadrado cuadrados], [http://es.wikipedia.org/wiki/Pentágono pentágonos], [http://es.wikipedia.org/wiki/Hexágono exágonos], [http://es.wikipedia.org/wiki/Octágono octógonos] y [http://es.wikipedia.org/wiki/Decágono decágonos].
+
==Rasgos principales==
 +
Un poliedro o sólido arquimedeano tiene los siguientes rasgos:
  
Por ser poliedros convexos los poliedros arquimedianos satisfacen la '''relación de Euler'''[http://www.ics.uci.edu/~eppstein/junkyard/euler/]:
+
# El segmento determinado por 2 vértices cualesquiera es siempre interior al cuerpo (es un poliedro convexo).
 +
# Todos sus vértices son puntos de una esfera de diámetro ''D'' (esfera circunscripta, véase la tabla inferior).
 +
# Sus caras son polígonos regulares de por lo menos 2 tipos diferentes (es semirregular).
 +
# Todas sus aristas tienen la misma longitud.
 +
# Los [http://es.wikipedia.org/wiki/Ángulo_poliedro ángulos poliedros] determinados por las aristas que convergen en cada vértice son convexos (es un polígono convexo). Es decir, la suma de los ángulos internos de todas las caras con un vértice común es menor que 360&deg;. Esto limita drásticamente las combinaciones de polígonos regulares que pueden formar las caras.
 +
# Sus caras pertenecen a 2 o a lo sumo a 3 de las siguientes categorías de polígonos regulares: [http://es.wikipedia.org/wiki/Triángulo_equilátero triángulos equiláteros], [http://es.wikipedia.org/wiki/Cuadrado cuadrados], [http://es.wikipedia.org/wiki/Pentágono pentágonos], [http://es.wikipedia.org/wiki/Hexágono exágonos], [http://es.wikipedia.org/wiki/Octágono octógonos] y [http://es.wikipedia.org/wiki/Decágono decágonos].
 +
# Los [http://es.wikipedia.org/wiki/Ángulo_poliedro ángulos poliedros] determinados por las aristas que convergen en cada vértice son congruentes, es decir, pueden superponerse exactamente por traslaciones, rotaciones o/y reflexiones. Ésto permite construirlos de modo simple usando "esquineros" similares para todos los vértices.
 +
# Satisface (por ser un poliedro convexo)  la relación de Euler[http://www.ics.uci.edu/~eppstein/junkyard/euler/]: Nº&nbsp;de vértices +&nbsp;Nº&nbsp;de caras &ndash;&nbsp;Nº&nbsp;de aristas  =&nbsp;2, como puede verificarse directamente de la tabla inferior.
  
<center>
+
El uso combinado de las relaciones 5 y 8 permiten determinar la cantidad de sólidos arquimedeanos posibles. Usualmente se considera que hay 15 poliedros arquimedeanos diferentes, donde 2 de ellos son enantiomorfos (imágenes especulares) de otros 2. El número que satisface la definición inicial es en realidad infinito porque incluye todos los [http://es.wikipedia.org/wiki/Prisma_(geometr%C3%ADa) prismas] y [http://es.wikipedia.org/wiki/Antiprisma  antiprismas] de caras laterales son cuadrados o triángulos equiláteras y cuyas bases son cualquiera de los infinitos polígonos regulares, exceptuando al cuadrado (este prisma coincide con el cubo). Por esta razón es usual, aunque no hay consenso universal al respecto, excluir a los prismas y antiprismas de la lista de poliedros arquimedeanos.
'''Nº de aristas + Nº de caras &ndash; Nº de vértices = 2''',
 
</center>
 
  
como puede verificarse directamente de la tabla inferior.
+
La tabla siguiente da algunos datos importantes de los poliedros arquimedeanos. En ''tipos de caras'' se especifica la cantidad de caras que pertenece a cada tipo de polígono regulare. Los ''ángulos en vértices'' son los determinados por las aristas que convergen en un vértice y se dan en sentido horario mirando desde el interior del poliedro. ''D'' es el diámetro de la esfera en la está circunscripto el poliedro y se expresa en términos de la longitud ''a'' de las aristas[http://mathworld.wolfram.com/ArchimedeanSolid.html]. Los dos últimos datos son indispensables para el método constructivo que se da en el artículo [[Cómo armar poliedros]]. El grupo puntual, que no se discutirá aquí,  identifica matemáticamente las [[simetrías]] de cada poliedro.
 
 
 
 
==Rasgos==
 
La tabla de algunos rasgos importantes de los poliedros arquimedianos. En ''tipos de caras'' se especifica el número de cada tipo de polígonos regulares que hay en el total de caras. Los ''ángulos en vértices'' son los determinados por las aristas que convergen en un vértice y se dan en sentido horario mirando desde el interior del poliedro. ''D'' es el diámetro de la esfera en la está circunscripto el poliedro y se expresa en términos de la longitud ''a'' de las aristas[http://mathworld.wolfram.com/ArchimedeanSolid.html]. Los dos últimos datos son indispensables para el método constructivo que se da en el artículo [[Construcción de poliedros regulares y semirregulares desarmables]]. El grupo puntual, que no se discutirá aquí,  identifica matemáticamente las [[simetrías]] de cada poliedro.
 
  
 
<br>
 
<br>
Línea 28: Línea 28:
 
|Cubo truncado ||align=center|[[Archivo:Cubo truncado.jpg|150px]]<br>[http://cyt-ar.com.ar/cyt-ar/images/f/f0/Cubo_truncado_animación.gif <small><center>'''Vea animación.'''</center></small>] ||align=right|24 ||60&deg; - 135&deg; - 135&deg; ||align=right|36 ||align=center|[[Archivo:D cubo truncado.jpg]] ||align=right|14 ||6 octógonos<br>8 triángulos ||align=center|O<sub>h</sub> ||align=center|[http://en.wikipedia.org/wiki/Truncated_cube]
 
|Cubo truncado ||align=center|[[Archivo:Cubo truncado.jpg|150px]]<br>[http://cyt-ar.com.ar/cyt-ar/images/f/f0/Cubo_truncado_animación.gif <small><center>'''Vea animación.'''</center></small>] ||align=right|24 ||60&deg; - 135&deg; - 135&deg; ||align=right|36 ||align=center|[[Archivo:D cubo truncado.jpg]] ||align=right|14 ||6 octógonos<br>8 triángulos ||align=center|O<sub>h</sub> ||align=center|[http://en.wikipedia.org/wiki/Truncated_cube]
 
|-
 
|-
|Octaedro truncado ||align=center|[[Archivo:Octaedro truncado.jpg|150px]]<br>[http://cyt-ar.com.ar/cyt-ar/images/d/d5/Octaedro_truncado_animación.gif <small><center>'''Vea animación.'''</center></small>] ||align=right|24 ||90&deg; - 120&deg; - 120&deg; ||align=right|36 ||align=center|&radic;10''a''&nbsp; ≅&nbsp;3,2''a'' ||align=right|14 ||6 cuadrados<br>8 exágonos ||align=center|O<sub>h</sub> ||align=center|[http://en.wikipedia.org/wiki/Truncated_octahedron]
+
|Octaedro truncado<br>o<br>tetrakaidecaedro<br>o<br>eptaparaleloedro de Fedorov<br>o<br>poliedro de Kelvin ||align=center|[[Archivo:Octaedro truncado.jpg|150px]]<br>[http://cyt-ar.com.ar/cyt-ar/images/d/d5/Octaedro_truncado_animación.gif <small><center>'''Vea animación.'''</center></small>] ||align=right|24 ||90&deg; - 120&deg; - 120&deg; ||align=right|36 ||align=center|&radic;10''a''&nbsp; ≅&nbsp;3,2''a'' ||align=right|14 ||6 cuadrados<br>8 exágonos ||align=center|O<sub>h</sub> ||align=center|[http://en.wikipedia.org/wiki/Truncated_octahedron]
 +
|-
 +
|Rombicuboctaedro<br>o<br>rombicuboctaedro menor ||align=center|[[Archivo:Rombicuboctaedro.jpg|150px]]<br>[http://cyt-ar.com.ar/cyt-ar/images/9/9e/Rombicuboctaedro_animación.gif <small><center>'''Vea animación.'''</center></small>] ||align=right|24 ||60&deg; - 90&deg; -90&deg; - 90&deg;  ||align=right|48 ||align=center|[[Archivo:D rombicuboctaedro.jpg]] ||align=right|26 ||&nbsp;8 triángulos<br>18 cuadrados ||align=center|O<sub>h</sub> ||align=center|[http://en.wikipedia.org/wiki/Rhombicuboctahedron]
 
|-
 
|-
 
! Nombre !!Imagen !!Vértices !!Ángulos<br>en vértices !!Aristas !!''D''[http://mathworld.wolfram.com/ArchimedeanSolid.html] !!Caras !!Tipos<br>de caras !!Grupo<br>puntual !! Fuentes
 
! Nombre !!Imagen !!Vértices !!Ángulos<br>en vértices !!Aristas !!''D''[http://mathworld.wolfram.com/ArchimedeanSolid.html] !!Caras !!Tipos<br>de caras !!Grupo<br>puntual !! Fuentes
 
|-
 
|-
|Rombicuboctaedro<br>o rombicuboctaedro menor ||align=center|[[Archivo:Rhombicuboctahedron.jpg|150px]]<br>[[Archivo:Rhombicuboctahedron.gif|thumb|<small><center>'''Vea animación.'''</center></small>]] ||align=right|24 ||60&deg; - 90&deg; -90&deg; - 90&deg; ||align=right|48 ||align=center| ||align=right|26 ||&nbsp;8 triángulos<br>18 cuadrados ||align=center|O<sub>h</sub> ||align=center|
+
|Cubo romo<br>o<br>cuboctaedro romo<br>(2 enantiomorfos) ||align=center|[[Archivo:Cubo romo antihorario.jpg|150px]]<br>[http://cyt-ar.com.ar/cyt-ar/images/c/ca/Cubo_romo_antihorario_animación.gif <small><center>'''Vea animación.'''</center></small>]<br>[[Archivo:Cubo romo horario.jpg|150px]]<br>[http://cyt-ar.com.ar/cyt-ar/images/6/6a/Cubo_romo_horario_animación.gif <small><center>'''Vea animación.'''</center></small>] ||align=right|24 ||60&deg; - 60&deg; - 60&deg; - 60&deg; - 90&deg; ||align=right|60 ||align=center|[[Archivo:D cubo romo.jpg]] ||align=right|38 ||&nbsp;6 cuadrados<br>32 triángulos ||align=center|O ||align=center|[http://en.wikipedia.org/wiki/Snub_cube]
 
|-
 
|-
|Cubo romo <br>o cuboctaedro romo<br>(2 enantiomorfos) ||align=center|[[Archivo:Snubhexahedronccw.jpg|150px]]<br>[[Archivo:Snubhexahedronccw.gif|thumb|<small><center>'''Vea animación.'''</center></small>]]<br>[[Archivo:Snubhexahedroncw.jpg|150px]]<br>[[Archivo:Snubhexahedroncw.gif|thumb|<small><center>'''Vea animación.'''</center></small>]] ||align=right|24 ||60&deg; - 60&deg; - 60&deg; - 60&deg; - 90&deg; ||align=right|60 ||align=center| ||align=right|38 ||&nbsp;6 cuadrados<br>32 triángulos ||align=center|O ||align=center|
+
|Icosidodecaedro<br>o<br>triakontágono ||align=center|[[Archivo:Icosidodecaedro.jpg|150px]]<br>[http://cyt-ar.com.ar/cyt-ar/images/2/2d/Icosidodecaedro_animación.gif <small><center>'''Vea animación.'''</center></small>] ||align=right|30 ||60&deg; - 108&deg; - 60&deg; - 108&deg; ||align=right|60 ||align=center|[[Archivo:D icosidodecaedro.jpg]] ||align=right|32 ||12 pentágonos<br>20 triángulos ||align=center|I<sub>h</sub> ||align=center|[http://en.wikipedia.org/wiki/Icosidodecahedron]
 
|-
 
|-
|Icosidodecaedro ||align=center|[[Archivo:Icosidodecahedron.jpg|150px]]<br>[[Archivo:Icosidodecahedron.gif|thumb|<small><center>'''Vea animación.'''</center></small>]] ||align=right|30 ||60&deg; - 108&deg; - 60&deg; - 108&deg; ||align=right|60 ||align=center| ||align=right|32 ||12 pentágonos<br>20 triángulos ||align=center|I<sub>h</sub> ||align=center|
+
|Cuboctaedro truncado<br>o<br>rombicuboctaedro mayor ||align=center|[[Archivo:Cuboctaedro truncado.jpg|150px]]<br>[http://cyt-ar.com.ar/cyt-ar/images/a/a3/Cuboctaedro_truncado_animación.gif <small><center>'''Vea animación.'''</center></small>] ||align=right|48 ||90&deg; - 120&deg; - 135&deg; <br>o<br><br> 90&deg; - 135&deg; - 120&deg; ||align=right|72 ||align=center|[[Archivo:D cuboctaedro truncado.jpg]] ||align=right|26 ||&nbsp;6 octógonos<br>&nbsp;8 exágonos<br>12 cuadrados ||align=center|O<sub>h</sub> ||align=center|[http://en.wikipedia.org/wiki/Truncated_cuboctahedron]
 +
|-
 +
|Dodecaedro truncado ||align=center|[[Archivo:Dodecaedro truncado.jpg|150px]]<br>[http://cyt-ar.com.ar/cyt-ar/images/5/52/Dodecaedro_truncado_animación.gif <small><center>'''Vea animación.'''</center></small>] ||align=right|60 ||60&deg; - 144&deg; - 144&deg; ||align=right|90 ||align=center|[[Archivo:D dodecaedro truncado.jpg]] ||align=right|32 ||12 decágonos<br>20 triángulos ||align=center|I<sub>h</sub> ||align=center|[http://en.wikipedia.org/wiki/Truncated_dodecahedron]
 
|-
 
|-
 
! Nombre !!Imagen !!Vértices !!Ángulos<br>en vértices !!Aristas !!''D''[http://mathworld.wolfram.com/ArchimedeanSolid.html] !!Caras !!Tipos<br>de caras !!Grupo<br>puntual !! Fuentes
 
! Nombre !!Imagen !!Vértices !!Ángulos<br>en vértices !!Aristas !!''D''[http://mathworld.wolfram.com/ArchimedeanSolid.html] !!Caras !!Tipos<br>de caras !!Grupo<br>puntual !! Fuentes
|-
 
|Cuboctaedro truncado<br>o rombicuboctaedro mayor ||align=center|[[Archivo:Cuboctaedro truncado.jpg|150px]]<br>[http://cyt-ar.com.ar/cyt-ar/images/a/a3/Cuboctaedro_truncado_animación.gif <small><center>'''Vea animación.'''</center></small>] ||align=right|48 ||90&deg; - 120&deg; - 135&deg; <br>o <br> 90&deg; - 135&deg; - 120&deg; ||align=right|72 ||align=center|[[Archivo:D cuboctaedro truncado.jpg]] ||align=right|26 ||&nbsp;6 octógonos<br>&nbsp;8 exágonos<br>12 cuadrados ||align=center|O<sub>h</sub> ||align=center|[http://en.wikipedia.org/wiki/Truncated_cuboctahedron]
 
|-
 
|Dodecaedro truncado ||align=center|[[Archivo:Truncateddodecahedron.jpg|150px]]<br>[[Archivo:Truncateddodecahedron.gif|thumb|<small><center>'''Vea animación.'''</center></small>]] ||align=right|60 ||60&deg; - 144&deg; - 144&deg; ||align=right|90 ||align=center| ||align=right|32 ||12 decágonos<br>20 triángulos ||align=center|I<sub>h</sub> ||align=center|
 
 
|-
 
|-
 
|Icosaedro truncado ||align=center|[[Archivo:Icosaedro truncado.jpg|150px]]<br>[http://cyt-ar.com.ar/cyt-ar/images/f/f3/Icosaedro_truncado_animación.gif <small><center>'''Vea animación.'''</center></small>] ||align=right|60 ||108&deg; - 120&deg; - 120&deg; ||align=right|90 ||align=center| [[Archivo:D icosaedro truncado.jpg]]||align=right|32 ||20 exágonos<br>12 pentágonos ||align=center|I<sub>h</sub> ||align=center| [http://en.wikipedia.org/wiki/Truncated_icosahedron]
 
|Icosaedro truncado ||align=center|[[Archivo:Icosaedro truncado.jpg|150px]]<br>[http://cyt-ar.com.ar/cyt-ar/images/f/f3/Icosaedro_truncado_animación.gif <small><center>'''Vea animación.'''</center></small>] ||align=right|60 ||108&deg; - 120&deg; - 120&deg; ||align=right|90 ||align=center| [[Archivo:D icosaedro truncado.jpg]]||align=right|32 ||20 exágonos<br>12 pentágonos ||align=center|I<sub>h</sub> ||align=center| [http://en.wikipedia.org/wiki/Truncated_icosahedron]
 
|-
 
|-
|Rombicosidodecaedro<br>o rombicosidodecaedro menor ||align=center|[[Archivo:Rhombicosidodecahedron.jpg|150px]]<br>[[Archivo:Rhombicosidodecahedron.gif|thumb|<small><center>'''Vea animación.'''</center></small>]] ||align=right|60 ||60&deg; - 90&deg; - 108&deg; - 90&deg; ||align=right|120 ||align=center| ||align=right|62 ||12 pentágonos<br>30 cuadrados<br>20 triángulos ||align=center|I<sub>h</sub> ||align=center|
+
|Rombicosidodecaedro<br>o<br>rombicosidodecaedro menor ||align=center|[[Archivo:Rombicosidodecaedro.jpg|150px]]<br>[http://cyt-ar.com.ar/cyt-ar/images/9/93/Rombicosidodecaedron_animación.gif <small><center>'''Vea animación.'''</center></small>] ||align=right|60 ||60&deg; - 90&deg; - 108&deg; - 90&deg; ||align=right|120 ||align=center|[[Archivo:D rombicosidodecaedro.jpg]] ||align=right|62 ||12 pentágonos<br>30 cuadrados<br>20 triángulos ||align=center|I<sub>h</sub> ||align=center|[[http://en.wikipedia.org/wiki/Rhombicosidodecahedron]]
 
|-
 
|-
! Nombre !!Imagen !!Vértices !!Ángulos<br>en vértices !!Aristas !!''D''[http://mathworld.wolfram.com/ArchimedeanSolid.html] !!Caras !!Tipos<br>de caras !!Grupo<br>puntual !! Fuentes
+
|Dodecaedro romo<br>o<br>icosidodecaedro romo<br>(2 enantiomorfos) ||align=center|[[Archivo:Dodecaedro romo antihorario.jpg|150px]]<br>[http://cyt-ar.com.ar/cyt-ar/images/8/81/Dodecaedro_romo_antihorario_animación.gif <small><center>'''Vea animación.'''</center></small>]<br>[[Archivo:Dodecaedro romo horario.jpg|150px]]<br>[http://cyt-ar.com.ar/cyt-ar/images/c/ca/Dodecaedro_romo_horario_animación.gif <small><center>'''Vea animación.'''</center></small>] ||align=right|60 ||60&deg; - 60&deg; - 60&deg; - 60&deg; - 108&deg; ||align=right|150 ||align=center|≅ 4,3''a'' ||align=right|92 ||12 pentágonos<br>80 triángulos ||align=center|I ||align=center|[http://en.wikipedia.org/wiki/Snub_dodecahedron]
 
|-
 
|-
|Dodecaedro romo<br>o icosidodecaedro romo<br>(2 enantiomorfos) ||align=center|[[Archivo:Snubdodecahedronccw.jpg|150px]]<br>[[Archivo:Snubdodecahedronccw.gif|thumb|<small><center>'''Vea animación.'''</center></small>]]<br>[[Archivo:Snubdodecahedroncw.jpg|150px]]<br>[[Archivo:Snubdodecahedroncw.gif|thumb|<small><center>'''Vea animación.'''</center></small>]] ||align=right|60 ||60&deg; - 60&deg; - 60&deg; - 60&deg; - 108&deg; ||align=right|150 ||align=center| ||align=right|92 ||12 pentágonos<br>80 triángulos ||align=center|I ||align=center|
+
|Icosidodecaedro truncado<br>o<br>rombicosidodecaedro mayor ||align=center|[[Archivo:Icosidodecaedro truncado.jpg|150px]]<br>[http://cyt-ar.com.ar/cyt-ar/images/f/f0/Icosidodecaedro_truncado_animación.gif <small><center>'''Vea animación.'''</center></small>] ||align=right|120 ||90&deg; - 120&deg; - 144&deg;<br>o<br><br>90&deg; - 144&deg; - 120&deg; ||align=right|180 ||align=center|[[Archivo:D icosidodecaedro truncado.jpg]] ||align=right|62 ||12 decágonos<br>20 exágonos<br>30 cuadrados ||align=center|I<sub>h</sub> ||align=center|[http://en.wikipedia.org/wiki/Truncated_icosidodecahedron]
|-
 
|Icosidodecaedro truncado<br>o rombicosidodecaedro mayor ||align=center|[[Archivo:Truncatedicosidodecahedron.jpg|150px]]<br>[[Archivo:Truncatedicosidodecahedron.gif|thumb|<small><center>'''Vea animación.'''</center></small>]] ||align=right|120 ||90&deg; - 120&deg; - 144&deg;<br>o <br>90&deg; - 144&deg; - 120&deg; ||align=right|180 ||align=center| ||align=right|62 ||12 decágonos<br>20 exágonos<br>30 cuadrados ||align=center|I<sub>h</sub> ||align=center|
 
 
|-
 
|-
 
! Nombre !!Imagen !!Vértices !!Ángulos<br>en vértices !!Aristas !!''D''[http://mathworld.wolfram.com/ArchimedeanSolid.html] !!Caras !!Tipos<br>de caras !!Grupo<br>puntual !! Fuentes
 
! Nombre !!Imagen !!Vértices !!Ángulos<br>en vértices !!Aristas !!''D''[http://mathworld.wolfram.com/ArchimedeanSolid.html] !!Caras !!Tipos<br>de caras !!Grupo<br>puntual !! Fuentes
 
|}
 
|}
 
<br>
 
<br>
 +
 +
==Algunas aplicaciones prácticas==
 +
[[Archivo:Cúpula sobre pechinas.jpg|200px|right|thumb|<small><center>'''Cúpula sobre pechinas de la<br>mezquita de Ahmed en Estambul.'''</center></small>]]
 +
* Cubo romo: [http://es.wikipedia.org/wiki/Pechina cúpula bizantina sobre pechinas] (en rigor, la superficie se obtiene de la intersección de la esfera que inscribe al cubo romo con el cubo del cual éste se obtiene por truncamiento).
 +
* Icosaedro truncado: cúpulas geodésicas;  pelotas de fútbol.
 +
* Octaedro truncado: único poliedro semirregular capaz de llenar por repetición un volumen sin dejar intersticios.
 +
* Rombicuboctaedro: forma antigua de faroles que llegó a ser usado en algunos de los primeros automóviles.
 +
* Rombicosidodecaedro: cúpulas geodésicas; estructura de los [http://es.wikipedia.org/wiki/Fullereno fullerenos].
  
 
==Fuentes==
 
==Fuentes==
 
* [http://mathworld.wolfram.com/ArchimedeanSolid.html Archimedean solid] en WolframMathworld.
 
* [http://mathworld.wolfram.com/ArchimedeanSolid.html Archimedean solid] en WolframMathworld.
* Ghyka, Matila; ''Estética de las proporciones en la naturaleza y en las artes''; Editorial Poseidón; ciudad de Buenos Aires; 1953; Ghyka EPNA; pp.&nbsp;87&#8209;95.
+
* Ghyka, Matila; ''Estética de las proporciones en la naturaleza y en las artes''; Editorial Poseidón; ciudad de Buenos Aires; 1953; Ghyka EPNA; pp.&nbsp;87&#8209;95. Discute interesantes usos artísticos pero la terminología no siempre es matemáticamente correcta.
 
* [http://en.wikipedia.org/wiki/Archimedean_solid Archimedean solid] en Wikipedia en inglés.
 
* [http://en.wikipedia.org/wiki/Archimedean_solid Archimedean solid] en Wikipedia en inglés.
* Uzquiano, Gabriel; ''¿Qué es un poliedro?; revista Investigación y Ciencia; septiembre 2011; pp.&nbsp;91&#8209;93.
+
* Uzquiano, Gabriel; ''¿Qué es un poliedro?''; revista Investigación y Ciencia; septiembre 2011; pp.&nbsp;91&#8209;93.
 +
 
 +
==Véase también==
 +
* [[Cómo armar poliedros]].
  
 
<br>
 
<br>
Línea 68: Línea 77:
  
 
[[Categoría:Matemática]]
 
[[Categoría:Matemática]]
 +
[[Categoría:glosario]]

Revisión actual del 11:14 31 mar 2014

Los poliedros arquimedeanos o sólidos arquimedeanos son poliedros convexos cuyas caras son polígonos regulares de 2 o 3 clases diferentes, cuyas aristas son todas de igual longitud y todos sus vértices son puntos de la esfera que los circunscribe. Los ángulos poliedros que determinan las aristas en cada vértice son todos congruentes. Aunque tienen variadas aplicaciones, estos cuerpos son de interés más por su bella e intrigante forma y sus ricas propiedades geométricas que por su utilidad práctica.


Rasgos principales

Un poliedro o sólido arquimedeano tiene los siguientes rasgos:

  1. El segmento determinado por 2 vértices cualesquiera es siempre interior al cuerpo (es un poliedro convexo).
  2. Todos sus vértices son puntos de una esfera de diámetro D (esfera circunscripta, véase la tabla inferior).
  3. Sus caras son polígonos regulares de por lo menos 2 tipos diferentes (es semirregular).
  4. Todas sus aristas tienen la misma longitud.
  5. Los ángulos poliedros determinados por las aristas que convergen en cada vértice son convexos (es un polígono convexo). Es decir, la suma de los ángulos internos de todas las caras con un vértice común es menor que 360°. Esto limita drásticamente las combinaciones de polígonos regulares que pueden formar las caras.
  6. Sus caras pertenecen a 2 o a lo sumo a 3 de las siguientes categorías de polígonos regulares: triángulos equiláteros, cuadrados, pentágonos, exágonos, octógonos y decágonos.
  7. Los ángulos poliedros determinados por las aristas que convergen en cada vértice son congruentes, es decir, pueden superponerse exactamente por traslaciones, rotaciones o/y reflexiones. Ésto permite construirlos de modo simple usando "esquineros" similares para todos los vértices.
  8. Satisface (por ser un poliedro convexo) la relación de Euler[1]: Nº de vértices + Nº de caras – Nº de aristas = 2, como puede verificarse directamente de la tabla inferior.

El uso combinado de las relaciones 5 y 8 permiten determinar la cantidad de sólidos arquimedeanos posibles. Usualmente se considera que hay 15 poliedros arquimedeanos diferentes, donde 2 de ellos son enantiomorfos (imágenes especulares) de otros 2. El número que satisface la definición inicial es en realidad infinito porque incluye todos los prismas y antiprismas de caras laterales son cuadrados o triángulos equiláteras y cuyas bases son cualquiera de los infinitos polígonos regulares, exceptuando al cuadrado (este prisma coincide con el cubo). Por esta razón es usual, aunque no hay consenso universal al respecto, excluir a los prismas y antiprismas de la lista de poliedros arquimedeanos.

La tabla siguiente da algunos datos importantes de los poliedros arquimedeanos. En tipos de caras se especifica la cantidad de caras que pertenece a cada tipo de polígono regulare. Los ángulos en vértices son los determinados por las aristas que convergen en un vértice y se dan en sentido horario mirando desde el interior del poliedro. D es el diámetro de la esfera en la está circunscripto el poliedro y se expresa en términos de la longitud a de las aristas[2]. Los dos últimos datos son indispensables para el método constructivo que se da en el artículo Cómo armar poliedros. El grupo puntual, que no se discutirá aquí, identifica matemáticamente las simetrías de cada poliedro.


Nombre Imagen Vértices Ángulos
en vértices
Aristas D[3] Caras Tipos
de caras
Grupo
puntual
Fuentes
Tetraedro truncado Tetraedro truncado.jpg
Vea animación.
12 60° - 120° - 120° 18 √(11/2)a  ≅ 2,3a 8 4 exágonos
4 triángulos
Td [4]
Cuboctaedro Cuboctaedro.jpg
Vea animación.
12 60° - 90° - 60° - 90° 24 2a 14 6 cuadrados
8 triángulos
Oh [5]
Cubo truncado Cubo truncado.jpg
Vea animación.
24 60° - 135° - 135° 36 D cubo truncado.jpg 14 6 octógonos
8 triángulos
Oh [6]
Octaedro truncado
o
tetrakaidecaedro
o
eptaparaleloedro de Fedorov
o
poliedro de Kelvin
Octaedro truncado.jpg
Vea animación.
24 90° - 120° - 120° 36 √10a  ≅ 3,2a 14 6 cuadrados
8 exágonos
Oh [7]
Rombicuboctaedro
o
rombicuboctaedro menor
Rombicuboctaedro.jpg
Vea animación.
24 60° - 90° -90° - 90° 48 D rombicuboctaedro.jpg 26  8 triángulos
18 cuadrados
Oh [8]
Nombre Imagen Vértices Ángulos
en vértices
Aristas D[9] Caras Tipos
de caras
Grupo
puntual
Fuentes
Cubo romo
o
cuboctaedro romo
(2 enantiomorfos)
Cubo romo antihorario.jpg
Vea animación.

Cubo romo horario.jpg
Vea animación.
24 60° - 60° - 60° - 60° - 90° 60 D cubo romo.jpg 38  6 cuadrados
32 triángulos
O [10]
Icosidodecaedro
o
triakontágono
Icosidodecaedro.jpg
Vea animación.
30 60° - 108° - 60° - 108° 60 D icosidodecaedro.jpg 32 12 pentágonos
20 triángulos
Ih [11]
Cuboctaedro truncado
o
rombicuboctaedro mayor
Cuboctaedro truncado.jpg
Vea animación.
48 90° - 120° - 135°
o

90° - 135° - 120°
72 D cuboctaedro truncado.jpg 26  6 octógonos
 8 exágonos
12 cuadrados
Oh [12]
Dodecaedro truncado Dodecaedro truncado.jpg
Vea animación.
60 60° - 144° - 144° 90 D dodecaedro truncado.jpg 32 12 decágonos
20 triángulos
Ih [13]
Nombre Imagen Vértices Ángulos
en vértices
Aristas D[14] Caras Tipos
de caras
Grupo
puntual
Fuentes
Icosaedro truncado Icosaedro truncado.jpg
Vea animación.
60 108° - 120° - 120° 90 D icosaedro truncado.jpg 32 20 exágonos
12 pentágonos
Ih [15]
Rombicosidodecaedro
o
rombicosidodecaedro menor
Rombicosidodecaedro.jpg
Vea animación.
60 60° - 90° - 108° - 90° 120 D rombicosidodecaedro.jpg 62 12 pentágonos
30 cuadrados
20 triángulos
Ih [[16]]
Dodecaedro romo
o
icosidodecaedro romo
(2 enantiomorfos)
Dodecaedro romo antihorario.jpg
Vea animación.

Dodecaedro romo horario.jpg
Vea animación.
60 60° - 60° - 60° - 60° - 108° 150 ≅ 4,3a 92 12 pentágonos
80 triángulos
I [17]
Icosidodecaedro truncado
o
rombicosidodecaedro mayor
Icosidodecaedro truncado.jpg
Vea animación.
120 90° - 120° - 144°
o

90° - 144° - 120°
180 D icosidodecaedro truncado.jpg 62 12 decágonos
20 exágonos
30 cuadrados
Ih [18]
Nombre Imagen Vértices Ángulos
en vértices
Aristas D[19] Caras Tipos
de caras
Grupo
puntual
Fuentes


Algunas aplicaciones prácticas

Cúpula sobre pechinas de la
mezquita de Ahmed en Estambul.
  • Cubo romo: cúpula bizantina sobre pechinas (en rigor, la superficie se obtiene de la intersección de la esfera que inscribe al cubo romo con el cubo del cual éste se obtiene por truncamiento).
  • Icosaedro truncado: cúpulas geodésicas; pelotas de fútbol.
  • Octaedro truncado: único poliedro semirregular capaz de llenar por repetición un volumen sin dejar intersticios.
  • Rombicuboctaedro: forma antigua de faroles que llegó a ser usado en algunos de los primeros automóviles.
  • Rombicosidodecaedro: cúpulas geodésicas; estructura de los fullerenos.

Fuentes

  • Archimedean solid en WolframMathworld.
  • Ghyka, Matila; Estética de las proporciones en la naturaleza y en las artes; Editorial Poseidón; ciudad de Buenos Aires; 1953; Ghyka EPNA; pp. 87‑95. Discute interesantes usos artísticos pero la terminología no siempre es matemáticamente correcta.
  • Archimedean solid en Wikipedia en inglés.
  • Uzquiano, Gabriel; ¿Qué es un poliedro?; revista Investigación y Ciencia; septiembre 2011; pp. 91‑93.

Véase también